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Supplementary Material

1. Overview

Due to the limited space on the main paper, we present more
additional details in this supplementary material, covering
the following aspects:
• Additional details on datasets, experimental parameters

related to data augmentation, and implementation details
in Sec. 2.

• Supplementary experiments investigating the impact of
bounding boxes on algorithm performance in Sec. 3.

• Extra SOTA quantitative and qualitative comparison ex-
periments on EgoBody-EgoSet [22], BEDLAM [1], and
ARCTIC [6], and extra visualization comparison on single
person, multiperson, and synthetic images. in Sec. 4.

2. Experiment Setup

2.1. Datasets

This subsection primarily describes the characteristics of the
datasets utilized in our main paper and provides details on
how we use these datasets in the training and testing stages.
AGORA [16] is a synthetic image dataset that encompasses
lots of complex scenarios, including severe occlusion and
truncations. It has 14K training images with 122K instances
and 1K validation images with around 8K instances. Re-
cently, AGORA has become an essential benchmark for
tasks related to SMPL [12] and SMPL-X [17], primarily
for its effectiveness in assessing algorithm performance in
occlusion-heavy scenes. Our approach utilizes the complete
dataset for training, validation, and testing purposes.
BEDLAM [1] is a synthetic video dataset offering a wide
variety of data, including diverse body shapes, motions, skin
tones, hairstyles, and clothing. The clothing is notably ren-
dered using a professional physics simulator, enhancing re-
alism, particularly in depicting character movement. Each
image in the dataset features between 1 to 10 individuals.
Originally comprising 286K images, we downscaled it by a
factor of 5, yielding 57L images with 190K instances, which
we then utilized for training.
MSCOCO [10] is a large-scale real-world dataset designed
for object detection, segmentation, keypoint detection, and
captioning. On the basis of the keypoint subset, we use the
pseudo SMPL-X [17] annotations from NeuralAnnot [14]
for training. It contains 56K multi-person images, featuring
a total of 147K instances.
EHF [17] is an indoor dataset consisting of only 100 im-
ages along with corresponding SMPL-X labels. Due to the
absence of a corresponding training set, current algorithms
often utilize it to assess algorithm generalization. It only

contains test sets with 100 single-person images.
UBody [8] is a dataset containing diverse real-life scenar-
ios, including movies, TV shows, talk shows, vlogs, sign
language, online classes, and more. UBody contains an ex-
tensive collection of rich gestures and expressions that are
not present in other real-world datasets. We down-sample
the training set to 54K images with 66K instances. We uti-
lize a downsampled test set, as used in SMPLer-X[2] and
OSX [8], which has 2642 images with 2642 instances.
ARCTIC [6] is an indoor dataset which mainly focuses on
the hand-object interaction. We downsample the original
training set 1000 times for a train set of 50K images with
50K instances. We discard the egocentric view, which only
contains hands, in our training. For the test set, following [2],
we keep the original test set with 207K images to evaluate
our method.
Egobody [22] is a large-scale dataset for egocentric views.
The egocentric view datasets are collected using Microsoft
HoloLens 2, including RGB, depth, eye gaze, head tracking,
and hand tracking. The SMPL-X data is obtained by fitting
the multi-Kinect rig data. We downsample 2 times to get
45K images with 45K instances in the egocentric-view split
for training. The test set has 62K images.

We pre-train our model by randomly sampling data
from AGORA, BEDLAM, and COCO. We choose these
three datasets because their multi-person images satisfy our
method of perceiving the positions of individuals in the
images. Additionally, AGORA and BEDLAM have the ad-
vantage of accurate ground truth, while COCO provides the
diversity of real-world scenes, preventing our method from
overfitting to synthetic data.

SMPLer-X [2] indicates that scaling up the data can en-
hance algorithm performance. Hence, we incorporate Ego-
body, ARCTIC, and UBody data into our training. The
sampling probabilities are 0.2, 0.2, 0.2, 0.2, 0.1, and 0.1, re-
spectively, for AGORA, BEDLAM, COCO, Egobody, ARC-
TIC, and UBody. ARCTIC and Egobody provide more
accurate real-world whole-body data compared to COCO,
while UBody contributes abundant and diverse gestures and
expressions. All the datasets are standardized into the Hu-
manData [5] format. Some visual demonstrations of AiOS
are provided in Fig. 1 and Fig. 2.

2.2. Implementation details

The training is conducted on 16 V100 GPUs, with a total
batch size of 32. We initialize AiOS’s backbone, encoder,
and part of the decoder from a weight trained on COCO
human pose estimation, provided by ED-Pose [21]. We use
Adam optimizer with a step learning rate for training. We



Figure 1. Illustration of AiOS in indoor datasets. The first two columns are the qualitative results on ARCTIC [6], while the last two
columns are the qualitative results on Egobody [22].

first train our model for 60 epochs with an initial learning rate
1×10−4 and drop at the 50th epoch on AGORA, BEDLAM,
and COCO. We finetune it for 50 epochs with 1 × 10−5

initial learning rate and drop at the 25th epoch on all train
datasets.

During the training stage, we adopt color jittering, ran-
dom horizontal flipping, random image resizing, and random
instance cropping. For the color jittering, we randomly apply
a variation of ±0.2 in the RGB channels. For the random hor-
izontal flipping, we augment images and their corresponding
annotations by horizontally flipping them with a probabil-
ity of 0.5. For random image resizing, during the training
process, we resize the images in proportion, ensuring that
the shorter side is kept between 480 and 800 pixels and the
longer side does not exceed 1333 pixels. During testing,
we set the shorter side to 800 pixels, and the longer side
is scaled proportionally, with the constraint that it does not
exceed 1333 pixels. For random instance cropping, we first
randomly enable the cropping operation with a probabil-
ity of 0.5. When performing the cropping operation on a
multi-person dataset, such as AGORA [16], BEDLAM [1],
COCO [10], We randomly sample 1 to N instances from the
image with probability 0.5, where N is the total number of
people in the image. The image is then cropped according

to their collective bounding box. Alternatively, with a 0.5
probability, the cropping operation is applied to the collec-
tive bounding box of all instances. We maintain the original
aspect ratio during the cropping process to avoid cropping
unusual aspect ratios.

2.3. Loss Functions

Body-location Decoder. The losses for supervising Body-
location Decoders are Lbox and Lcls. Lbox contains L1 loss
and the GIOU loss [18] for the body location. Lcls is focal
loss [9] for classify body tokens.
Body-refinement Decoder.. The losses for supervising
Body-refinement Decoders are Lbox, Lj2d and Lsmplxb

.
Lbox contains L1 and loss GIOU loss for the body location,
hands location, and face location. Lj2d is the L1 loss and
OKS loss supervising the body joints location and Lsmplx

contains L1 loss with ground truth SMPL-X body parame-
ters Lparam, L1 loss Lkp3d for 3D body keypoints regressed
by SMPL-X J-regressor, and L1 loss Lkp2d for projected 2D
keypoints.
Wholebody-refinement Decoder.. The losses for supervis-
ing Wholebody-refinement Decoders are Lj2d and Lsmplx.
Lj2d is the L1 loss and OKS loss supervising the whole-body
joints location and Lsmplx contains L1 loss with ground truth



Figure 2. Illustration of AiOS in outdoor datasets. The first three rows are qualitative results on UBody [8], and the last row is qualitative
results on COCO [10]

SMPL-X parameters Lparam, L1 loss Lkp3d for 3D whole-
body keypoints regressed by SMPL-X J-regressor, and L1
loss Lkp2d for projected 2D whole-body keypoints.
Loss Weights We weighted-sum all the losses at all stages as
the final loss. The loss weights of the same type of loss in dif-
ferent stages are the same, which are shown as follows: Lcls:
2.0, Lsmplx: 1.0 (pose), 0.01 (shape, expression), Lkp3d: 1.0
(body), 0.5 (face, hand), Lkp2d: 1.0 (body), 0.5 (face, hand),
L1
j2d: 10, Loks: 4.0 (body), 0.5 (face), 0.5 (hands), Lgiou:

2.0, L1
box: 5.0.

3. Sensitivity Analysis of Performance to Bound-
ing Box Accuracy

In this section, we present that current methodologies exhibit
a significant sensitivity to bounding boxes. Our experiments
are carried out on the AGORA [16] validation set, utilizing
official evaluation tools 1 for a thorough assessment. We
report several key metrics, including Normalized Mean Ver-
tex Error (NMVE), Normalized Mean Joint Error (NMJE),
Mean Vertex Error (MVE), and Mean Per-Joint Position Er-
ror (MPJPE), which focus on the reconstruction accuracy
of body, hands, and face. Additionally, we include F-Score,
precision, and recall to evaluate the accuracy of detection.

1https://github.com/pixelite1201/agora_evaluation
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Figure 3. Illustration of Inter-human, Intra-human, and Cross
Attention. Inter-human attention is conducted between the body
tokens and body, hand, and face location tokens of different per-
sons’. Intra-human attention is conducted with the location and
joint tokens of the same person. Cross-attention is conducted be-
tween image features and all the tokens.

Firstly, we utilize the ground truth (GT) bounding box to
crop the image and evaluate the performance of OSX [8] and
SMPLer-X [2], denoted by GT Box in Table 1. Following
this, we employ DAB-DETR[3, 11], an off-the-shelf detec-
tion model, to identify human bounding boxes, replacing the
GT boxes for image cropping. We present detection results
under three bounding box score thresholds: 0.1, 0.2, and
0.3, labeled as detected boxes with scores 0.1, 0.2, and 0.3,
respectively. A higher score indicates greater confidence in
the detection results, but it may lead to missing instances
with severe occlusion. This is reflected in the metrics as
high accuracy but low recall. Conversely, a lower score
threshold retains results with lower confidence, capturing



Methods Box Type F Score↑ Precision↑ Recall↑ NMVE↓ (mm) NMJE↓ (mm) MVE↓ (mm) MPJPE↓ (mm)

All Body All Body All Body Face LHand RHand All Body Face LHand RHhand

OSX [8]

GT box 1.0 1.0 1.0 120.4 75.2 116.1 72.1 120.4 75.2 39.4 47.5 48.8 116.1 72.1 40.5 45.1 46.4
Detected box w score 0.1 0.58 0.42 0.92 237.8 155.9 228.3 147.4 137.9 90.4 43.8 48.3 50.4 132.4 85.5 46.4 46.1 48.1
Detected box w score 0.2 0.8 0.74 0.87 165.9 110.6 159.2 104.7 132.7 88.5 40.7 44.9 46.9 127.4 83.8 43.1 42.9 44.8
Detected box w score 0.3 0.86 0.89 0.83 148.1 100.3 142.1 95.1 127.4 86.3 37.8 41.8 43.6 122.2 81.8 39.8 39.8 41.6
GT box× 0.95 0.93 0.97 123.6 77.3 119.3 74.2 117.4 73.4 38.2 46.3 47.7 113.3 70.5 39.0 43.9 45.3
AiOS box 0.95 0.93 0.97 124.3 78.7 120.0 75.7 118.1 74.8 37.4 45.5 47.0 114.0 71.9 38.3 43.2 44.7

SMPLer-X [2]

GT box 1.0 1.0 1.0 99.5 60.2 95.5 57.5 99.5 60.2 32.9 41.9 43.0 95.5 57.5 34.1 39.5 40.5
Detected box w score 0.1 0.58 0.43 0.92 203.4 131.6 195.3 124.7 118.0 76.3 37.1 43.6 44.4 113.3 72.3 39.5 41.3 42.2
Detected box w score 0.2 0.81 0.75 0.88 140.7 92.6 135.1 87.8 114.0 75.0 34.7 40.7 41.7 109.4 71.1 36.9 38.5 39.5
Detected box w score 0.3 0.86 0.9 0.83 126.4 84.4 121.3 80.1 108.7 72.6 31.8 37.8 38.7 104.3 68.9 33.7 35.7 36.7
GT box× 0.95 0.93 0.97 101.5 61.4 97.6 58.8 96.4 58.3 31.7 40.8 41.9 92.7 55.9 32.6 38.3 39.4
AiOS box 0.95 0.93 0.97 103.3 63.5 99.6 61.1 98.1 60.3 31.3 40.4 41.8 94.6 58.0 32.3 38.0 39.4

AiOS - 0.95 0.93 0.97 106.4 64.2 103.4 62.1 101.1 61.0 30.7 43.9 45.7 98.2 59.0 32.8 41.5 43.4

Table 1. AGORA validation set. OSX [8] and SMPLer-X [2] are finetuned on the AGORA training set. However, AiOS is not intentionally
fine-tuned exclusively on AGORA. GT Box means that this method uses the ground truth bounding box to crop the image. GT box× means
that this method uses the ground truth bounding box to crop the image but filters the instances that AiOS fails to detect. AiOS box means
that this method uses the bounding box provided by AiOS. The best results are colored with red, and the second-best results are colored with
blue for OSX and SMPLer-X, respectively.

Methods Box Type F Score↑ Precision↑ Recall↑ NMVE↓ (mm) NMJE↓ (mm) MVE↓ (mm) MPJPE↓ (mm)

All Body All Body All Body Face LHand RHand All Body Face LHand RHhand

OSX [8]

GT box× 0.95 0.93 0.97 123.6 77.3 119.3 74.2 117.4 73.4 38.2 46.3 47.7 113.3 70.5 39.0 43.9 45.3
GT box with noise× 0.95 0.93 0.97 126.1 78.8 121.8 75.6 119.8 74.9 38.7 46.9 49.1 115.7 72.1 39.6 44.5 46.6
AiOS box 0.95 0.93 0.97 124.3 78.7 120.0 75.7 118.1 74.8 37.4 45.5 47.0 114.0 71.9 38.3 43.2 44.7

SMPLer-X [2]

GT box× 0.95 0.93 0.97 101.5 61.4 97.6 58.8 96.4 58.3 31.7 40.8 41.9 92.7 55.9 32.6 38.3 39.4
GT box with noise× 0.95 0.93 0.97 105.6 64.0 101.6 61.5 100.3 60.8 32.5 42.4 43.6 96.5 58.4 33.5 39.9 41.0
AiOS box 0.95 0.93 0.97 103.3 63.5 99.6 61.1 98.1 60.3 31.3 40.4 41.8 94.6 58.0 32.3 38.0 39.4

Table 2. AGORA validation set with noise bounding box. OSX [8] and SMPLer-X [2] are finetuned on the AGORA training set. GT
box means that this method uses the ground truth bounding box to crop the image. GT box with noise means translating the ground truth
bounding box by 10% of the image size in the horizontal direction, causing the human to deviate from the image center. This is a very
small noise that ensures the person is not removed from the image plane, avoiding truncation. × means that this method filters the instances
that AiOS fails to detect. The best results are colored with red, and the second-best results are colored with blue for OSX and SMPLer-X,
respectively.

more instances with severe occlusion but resulting in many
redundant detections. This is reflected in the metrics as high
recall but lower accuracy.

From the data presented in Table 1, it’s evident that regard-
less of using a low or high threshold for filtering detection
results, both OSX [8] and SMPLer-X [2] show a marked de-
crease in performance in terms of NVME and NMJE when
compared to results achieved using GT bounding boxes. This
performance gap is largely due to the way NMVE and NMJE
are normalized using the F1 score. The F1 score, being the
harmonic mean of recall and precision, penalizes methods for
both missed detections and false positives, which explains
the observed discrepancy in performance.

Notably, when we filter the detection results with a score
of 0.1, denoted by Detected box w score 0.1, the recall
is 0.92, indicating that we detect the majority of instances,
although there were many redundant detections. In this case,
if we concentrate on reconstruction accuracy, represented by
MVE and MPJPE, we observe that the results using detected
bounding boxes OSX and SMPLer-X are significantly worse
than using GT bounding box for cropping images.

On the lower part of Table 1, we present the AiOS results.
To allow more hard cases to be detected, we use a threshold
of 0.1 to filter the result. Similar to the main paper, providing
AiOS’s bounding boxes to OSX and SMPLer-X denoted by
AiOS box, leads to a significant performance increase com-

pared to using the detected boxes (Detected box w score
0.3), even though AiOS’s box includes more challenging
cases. Specifically, there is a significant improvement in
NMVE with a 16% reduction from 148.1 to 124.3 for OSX
and an 18% decrease from 126.4 to 103.3 for SMPLer-X.
Additionally, there is an improvement in NMJE, with a 15%
reduction from 142.1 to 120.0 for OSX and a 17% decrease
from 121.3 to 99.6 for SMPLer-X. These results substantiate
that one-stage methods demonstrate superior performance in
real-world scenarios compared to existing two-stage meth-
ods.

For a fair comparison with OSX and SMPLer-X, which
use the GT bounding boxes to crop images, we filter out the
same instances that AiOS failed to detect for both OSX and
SMPLer-X. Interestingly, we found that the results obtained
using AiOS bounding boxes (denoted with AiOS box in
Table 1) are comparable to those obtained using GT bound-
ing boxes (denoted with GT box×). Notably, under this
bounding box setting, AiOS still outperforms the current
state-of-the-art OSX, even though it utilizes the GT bound-
ing box and is on par with the foundational model SMPler-X
L20. To further demonstrate the superiority of AiOS, we
follow the procedure in RoboSMPLX [15] to translate the
image by 0.1 of the image size horizontally, introducing a
small noise to the GT bounding boxes (denoted by GT box
with noise× in Table 2). It’s worth noting that this noise



Input ROMP BEV Ours

Input OSX SMPLer-X Ours Ours

Input Hand4Whole OSX SMPLer-X Ours

Figure 4. Additional visual comparisons with existing methods. Upper part: The first column is the input images, and they are
downloaded from the internet. The second column is the visualization results of ROMP [19], the third column shows the visualization results
of BEV [20], and the last column illustrates our visualization results; Middle part: Comparison of current SOTA methods [2, 8] with our
AiOS model on AGORA [16]. Lower part:Comparison of current SOTA methods [2, 8, 13] with our AiOS model on EHF test [4].

Methods F Score↑ Precision↑ Recall↑ NMVE↓ (mm) NMJE↓ (mm) MVE↓ (mm) MPJPE↓ (mm)

All Body All Body All Body Face LHand RHand All Body Face LHand RHhand

PIXIE [7] 0.94 0.99 0.90 158.7 107.2 153.7 103.5 149.2 100.8 51.4 44.8 48.9 144.5 97.3 55.4 41.3 44.8
BEDLAM-CLIFF 0.94 0.99 0.90 100.6 65.2 98.0 64.3 94.6 61.3 29.8 34.7 35.5 92.1 60.4 30.4 32.2 32.6
BEDLAM-CLIFF++† 0.94 0.99 0.90 93.2 61.2 90.9 60.4 87.6 57.5 27.3 30.3 32.6 85.4 56.8 28.0 28.0 29.9
AiOS† 0.95 1 0.90 87.6 57.7 85.8 57.7 83.2 54.8 26.4 28.1 30.8 81.5 54.8 26.2 25.9 28.1

Table 3. BEDLAM test set. The best results are in bold. † denotes methods that include the AGROA training set.

only shifts the person away from the image center and does
not remove the person from the image plane, avoiding trun-

cation and occlusion. Firstly, compare it with the results
cropping with the GT bounding box denoted by GT box×,



PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

H4W [13] 63.4 18.1 4.0 136.8 54.8 59.2
OSX [8] 56.9 17.5 3.9 102.6 56.5 44.6
OSX [8]† 33.0 18.8 3.3 58.4 39.4 30.4
SMPLer-X [2] 31.9 18.9 2.5 52.2 39.3 27.0
Native AiOS 31.8 19.7 2.3 51.6 40.6 26.5
AiOS 30.2 19.2 2.1 47.1 38.3 26.1

Table 4. ARCTIC. † denotes the method finetuned on the ARCTIC
training set.

Method PA-PVE↓ (mm) PVE↓ (mm)

All Hands Face All Hands Face

H4W [13] 58.8 9.7 3.7 121.9 50.0 42.5
OSX [8] 54.6 11.6 3.7 115.7 50.6 41.1
OSX [8]† 45.3 10.0 3.0 82.3 46.8 35.2
SMPLer-X [2] 38.9 9.9 3.0 66.6 42.7 31.8
SMPLer-X [2]† 37.8 9.9 2.9 63.6 46.3 32.3
Native AiOS 40.8 9.1 3.0 64.6 42.3 26.3
AiOS 38.0 9.0 2.9 61.6 40.0 26.7

Table 5. EgoBody-EgoSet. † denotes the methods that are fine-
tuned on the EgoBody-EgoSet training set.

we can observe a drop in performance. Specifically, for
NMVE, OSX increased from 123.6 to 126.1, and SMPLer-
X increased from 101.5 to 105.6. Regarding NMJE, OSX
increased from 119.3 to 121.8, and SMPLer-X increased
from 97.6 to 101.6. This observation indicates that current
two-stage methods are highly sensitive to the accuracy of the
bounding box, as even a slight noise introduced, causing the
person to be off-center, results in a performance drop, even
with GT bounding boxes.

When comparing the results obtained by cropping images
with bounding boxes provided by AiOS to those obtained by
cropping with GT bounding boxes and GT bounding boxes
with added noise, we observe that the results of cropping
with AiOS-provided bounding boxes are slightly inferior
to those obtained with GT bounding boxes in body-related
metrics but better than GT bounding boxes with added noise.
However, for the face and hands, the results of cropping
with AiOS-provided bounding boxes can even be better than
those obtained with GT bounding boxes. We attribute this
improvement to AiOS’s attention to not only the body but
also the hands and face.

4. Extra SOTA comparison experiments
In this section, we show the extra single datasets on BED-
LAM, ARCTIC, and EgoBody-EgoSet in Table 3, 4, 5. Our
proposed AiOS achieved SOTA performance across all these
datasets. Also, we provide extra visualization comparison
in Fig. 4.
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