
Behind the Veil: Enhanced Indoor 3D Scene Reconstruction with Occluded
Surfaces Completion

Su Sun* 1, Cheng Zhao* 2, Yuliang Guo2, Ruoyu Wang2, Xinyu Huang2, Yingjie Victor Chen1, Liu Ren2

1Purdue University, 2Bosch Research North America, Bosch Center for Artificial Intelligence (BCAI)
{sun931, victorchen}@purdue.edu

{cheng.zhao, yuliang.guo2, ruoyu.wang, xinyu.huang, liu.ren}@us.bosch.com

In this appendix, we provide more details on the datasets,
evaluation metrics, and baselines in Appendices 1, 2, and 3.
Additionally, we elaborate on our method implementation,
including data preparation, network designs and training in
Appendix 4. Furthermore, the runtime analysis and video
demo are provided in Appendices 5 and 6, respectively.
Lastly, we include further information about our newly de-
veloped 3D Complete Room Scene (3D-CRS) dataset in
Appendix 7.

1. Datasets

We evaluate the proposed method with the baselines on
two datasets: 3D-CRS and iTHOR scene dataset from AI2-
THOR [3]. Most of the existing public indoor RGB-D
datasets don’t provide the completed 3D meshes of room
scenes. To validate the generalization of our approach, we
created a new dataset named 3D Complete Room Scene
(3D-CRS) using Unreal Engine 4.27 for the main experi-
ment. 3D-CRS contains 20 distinct indoor room scenes,
each with RGB, depth, normal, semantic/instance masks,
and camera trajectories. Notably, we provide the completed
3D scene meshes for each room, consisting of both 3D fur-
niture meshes and room layout meshes. We are capable of
generating an infinite amount of data from the 3D complete
scene mesh, by using a virtual camera in Unreal Engine.
For the experiments conducted in this paper, we only uti-
lized depth images and 3D room meshes. We further em-
ploy the iTHOR dataset as the complementary experiment,
which provides the complete 3D scene meshes. iTHOR is
a near photo-realistic interactable framework for embodied
AI agents, including 120 room-scale scenes manually mod-
elled by 3D artists. From this collection, we selected 13 liv-
ing room models and exported their scene meshes by Unity
for our second experiment.

*Equally contributed as co-first author. This work was done during Su’s
internship at Bosch.

32

1

Latent Codes:
4X12=48

Postion
Encodings:9

SDFs

32

32

+

128

Latent Codes:
5X12=60

Postion
Encodings:9

128

128

+

59

128

128

128

1

 SDFs

 59 69+

FC & ReLU

FC

Geo-decoder 3D Inpainter

Figure 1. Network Architecture of Geo-decoder and 3D Inpainter

2. Metrics

Following the evaluation metrics in BNV-Fusion [4], the
standard metrics Accuracy (Accu.), Completeness (Comp.)
and F1 score (F1) are employed for the quantitative anal-
ysis. To be specific, we firstly uniformly sample 100,0000
points from the ground truth completed 3D meshes and gen-
erated 3D meshes, respectively, then compute the Accu.,
Comp. and F1 metrics. Accu. calculates the fraction of
points from the reconstructed 3D mesh which is closer to
points from the ground truth completed 3D mesh than a
threshold distance of 2.5cm. Similarly, Comp. calculates
the fraction of points from the ground-truth completed 3D

1



mesh which is closer to points from the reconstructed 3D
mesh than a threshold distance of 2.5cm. The overall per-
formance metric, F1, is defined as the harmonic mean of
Accu. and Comp.

3. Baselines
In our comparison experiments, we aimed to demonstrate
the accuracy of our proposed method by comparing it
against three baseline methods: TSDF-Fusion [8], Go-
Surf [7] and BNV-Fusion [4]. TSDF-Fusion [8], which is
implemented in the Open3D library, is currently the SOTA
explicit geometry-based 3D surface reconstruction method.
BNV-Fusion [4], which utilizes neural implicit representa-
tions, is currently the SOTA implicit-style 3D surface recon-
struction method. For a fair comparison with the baseline
Go-Surf [7], we modified its architecture by omitting the
RGB branch during both the training and inference phases.
All the baselines, the same as our method, use only depth
images as input, ensuring a fair basis for comparison. It’s
important to note that the encoder used in BNV-Fusion is
pre-trained on the large-scale ShapeNet dataset, notably
improving the accuracy of visible surface reconstruction.
However, our method does not involve this particular pre-
training step.

4. Implementation Details
Data Preprocessing:

1) Mesh Processing: It was noted that human-created
meshes frequently have artifacts on the exteriors of room
layouts. To maintain consistency and purity in our ground
truth meshes, we manually culled these unwanted external
structures. Once these meshes were culled, we further pro-
cessed them to be watertight using [2], enabling the compu-
tation of Signed Distance Functions (SDF).

2) Depth Image Rendering: For each scene, we first
generate the camera trajectories. These trajectories are de-
fined through Catmull-Rom spline interpolation, anchored
on a series of manually chosen control points. Using the
Trimesh raytracer [1], we render depth images correspond-
ing to each camera pose. The number of sampled depth
frames in each scene of 3D-CRS and iTHOR dataset are
given in Table 1 and Table 2 respectively. The depth images
for both datasets are rendered at a resolution of 1024×768.

3) Point Sampling: To prepare the training data for our
3D Inpainter, we extract SDF samples from each training
scene. Each mesh is first normalized, followed by sampling
around 8 × 106 signed distances close to the surface and
an equal number of signed distances uniformly distributed
within the scene bounding box. For non-surface samples,
we maintain a 50% ratio between positive and negative
SDFs, representing visible free space and invisible interior
of furniture, respectively.

Octree Feature Volume: The voxel resolution in our
configuration is set to 2 cm, and the latent code assigned to
each corner of the octree node is set to 12 dimension.

Network Architecture: Figure 1 illustrates the network
architecture of the Geo-Decoder and 3D Inpainter. The
Geo-Decoder employs a relatively shallow multilayer per-
ceptron (MLP) consisting of 4 fully connected layers. Each
of these layers is followed by a ReLU activation, except for
the final layer. In contrast, the 3D Inpainter utilizes a net-
work structure similar to DeepSDF [6], consisting of 8 fully
connected layers. These layers are applied with weight nor-
malization and interconnected via ReLU activations and a
0.3 dropout rate, except for the last layer. A skip connec-
tion is integrated at the 4th layer of the 3D Inpainter.

3D Inpainter Training: In the training phase of the
3D Inpainter, our approach starts with randomly selecting a
scene, loading its octree feature volume along with training
samples, and then optimizing both the features and the 3D
Inpainter over several consecutive iterations. Subsequently,
we save the feature volume and repeat this process for each
scene until all scenes have been trained within an epoch.
We experimentally found that 100 consecutive iterations per
scene produces a desirable balance between generalization
across different scenes and accuracy within a specific scene.
The 3D Inpainter is offline trained using Adam optimizer
with a learning rate of 1e-3. The training of our 3D In-
painter is conducted on an NVIDIA RTX 3090 GPU for
100 epochs, which takes about 8 hours.

Geo-decoder Optimization: The Geo-decoder is online
optimized using Adam optimizer with a learning rate of 1e-
2. The optimization process is conducted on an NVIDIA
RTX 3090 GPU for 1000-10000 iterations, which approxi-
mately takes 3-30 mintues. The number of iterations can be
chosen based on different application requirements, which
is a trade-off between speed and accuracy.

Octree Feature Training and Optimization: During
both offline training and online optimization, we observed
that high-level features in the octree have less fluctuation
and faster convergence during training, in contrast to low-
level features. Therefore, we implemented a learning rate
decay approach for octree features, progressively reducing
the learning rate from high to low levels. This decay starts
from an initial rate of 1e-3 and decreases for each level at a
rate of 0.5.

3D Surface Generation: Our method is capable of in-
ferring SDFs at arbitrary 3D locations. For the extraction
of triangle meshes, we use Marching Cubes [5], applying a
spatial resolution of 1cm.

5. Runtime Analysis
The network is implemented under the PyTorch framework
and is tested on a machine equipped with an NVIDIA RTX
3090 GPU accelerated by CUDA and cuDNN. The infer-



Scene 01 02 03 04 05
Depth Frames 199 172 188 235 156

Scene 06 07 08 09 10
Depth Frames 235 223 240 176 121

Scene 11 12 13 14 15
Depth Frames 275 110 243 199 200

Scene 16 17 18 19 20
Depth Frames 155 210 200 187 278

Table 1. The number of depth images sampled from each scene in
the 3D-CRS dataset.

FloorPlan 202 205 206 207 210
Depth Frames 100 100 100 100 100

FloorPlan 213 217 219 220 225
Depth Frames 100 100 100 100 100

FloorPlan 226 228 229
Depth Frames 100 100 100

Table 2. The number of depth images sampled from each scene in
the iTHOR dataset.

ence runtime of our framework can be mainly divided into
two distinct steps: 1) the octree feature volume building
costs around 0.2 second per depth frame with 1024 × 768
resolution; 2) the Geo-decoder and feature optimization
takes about 0.2 second per iteration. The number of iter-
ations can vary between 1000 to 10000, allowing flexibility
to balance speed and accuracy based on the specific appli-
cation requirements.

6. Video Demo
We attach a video demo of visual comparison results in one
scene. The video showcases the 3D surface reconstruction
of the scene using our method, as well as the BNF-Fusion
and TSDF-Fusion methods, along with the ground truth,
while following a virtual camera trajectory.

7. 3D-CRS Dataset
To address the limitations of existing public indoor RGB-
D datasets, which typically lack complete 3D meshes of
room scenes and furniture, we build a novel dataset, named
the 3D Complete Room Scene (3D-CRS) upon a com-
mercial indoor 3D dataset provided by Coohome LLC 1.
Although the scene dataset from AI2-THOR [3] includes
complete 3D scene meshes, their data does not meet the
high-quality photorealistic standards, and the complexity of
their room layouts is insufficient. Consequently. we cre-
ated the 3D-CRS dataset to facilitate further research on
3D surface completion. The 3D-CRS dataset, illustrated in
Figure 4: right, is meticulously crafted by 3D artists us-
ing Unreal Engine 4.27. It features 20 high-quality indoor
scenarios that represent typical household rooms, includ-

1https://www.coohom.com/b2b

ing kitchens, bathrooms, living rooms, and bedrooms. We
utilized the virtual camera in Unreal Engine to render an
extensive amount of photorealistic data from these high-
quality 3D scene models. The camera trajectory is deter-
mined using Catmull-Rom spline interpolation, based on a
series of manually selected control points, aiming to en-
compass the majority space of each room scene. We ren-
der 2D images at 1024× 768 resolution using a 120-degree
FOV camera along the camera trajectory, under the auto-
matic exposure and default indoor light in Unreal Engine.
As shown in Figure 2, each scene in the 3D-CRS dataset in-
cludes RGB images, depth images, normal images, seman-
tic/instance masks, and albedo. Besides the 2D rendering
data, we also provide the complete 3D scene meshes (Fig-
ure 4: left) for each room, consisting of both complete 3D
furniture meshes (Figure 3) and complete 3D room layout
meshes (Figure 4: middle). The 3D-CRS dataset’s config-
uration allows AI agents to interact with objects in these
environments in various ways. Our 3D scene models are
designed to be seamlessly compatible with robotics simula-
tions, such as NVIDIA’s Isaac Sim2. Our 3D-CRS dataset
greatly enhances the potential for research in 3D surface
completion and other robotics-related fields.

References
[1] Dawson-Haggerty et al. trimesh. 2
[2] Jingwei Huang, Hao Su, and Leonidas Guibas. Robust water-

tight manifold surface generation method for shapenet mod-
els. arXiv preprint arXiv:1802.01698, 2018. 2

[3] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D
Environment for Visual AI. arXiv, 2017. 1, 3

[4] Kejie Li, Yansong Tang, Victor Adrian Prisacariu, and
Philip HS Torr. Bnv-fusion: Dense 3d reconstruction using bi-
level neural volume fusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6166–6175, 2022. 1, 2

[5] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987. 2

[6] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. In Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 165–174, 2019. 2

[7] Jingwen Wang, Tymoteusz Bleja, and Lourdes Agapito. Go-
surf: Neural feature grid optimization for fast, high-fidelity
rgb-d surface reconstruction. In 2022 International Confer-
ence on 3D Vision (3DV). IEEE, 2022. 2

[8] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 2

2https://developer.nvidia.com/isaac-sim

https://www.coohom.com/b2b


Figure 2. Some examples of 2D rendered data from the 3D-CRS dataset: showcasing from left to right, RGB, depth, semantic mask,
normal and albedo. We only use depth images and 3D meshes in the experiment of this manuscript.



Figure 3. Some examples of complete 3D furniture mesh from the 3D-CRS dataset.



Figure 4. Some examples of complete 3D scene mesh (left), 3D room layout mesh (middle) and 3D scene model (right) from the 3D-CRS
dataset.


	. Datasets
	. Metrics
	. Baselines
	. Implementation Details
	. Runtime Analysis
	. Video Demo
	. 3D-CRS Dataset

