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This supplementary document provides detailed experimental settings and results, which have not been included in the
main paper due to the page limit. Specifically, we first present details of the experimental setup. Then, we provide the
complete results of model accuracies and ASRs under various Untargeted and Targeted attacks (Table 1 and Table 2 in the
main paper). Subsequently, we present the specific communication topologies with different Byzantine percentages. Finally,
we offer the defense results under another communication topology, which presents an extreme adversary setting (i.e., 80% of
clients are malicious, and each benign client is connected to only one benign client with all other neighbors being malicious).

1. Experimental Setup
Taking Figure 1 (a) in the main paper as an example of the decentralized communication topology, we evaluate DFL-Dual
on different datasets and various models with two performance metrics of Accuracy (ACC) and Attack Success Rate (ASR).
Specifically, we evaluate DFL-Dual on MNIST [9] and Fashion-MNIST [13] using Logistic Regression (LR), Fully Con-
nected (FC), and Convolutional Neural Network (CNN), and on CIFAR-10 [8] using ResNet-18. We adopt the same method
in [4, 16] to simulate different non-IID data distribution degrees. Specifically, the non-IID degree is captured by a sample
allocation probability p, with larger p indicating a higher non-IID degree. We consider both untargeted and targeted (back-
door) attacks. The untargeted attacks include Label Flipping Attack, Krum Attack [6], and Back-Gradient Attack [11], while
the targeted attacks include Scaling Attack [1], DBA Attack [14], and A little is Enough Attack [2]. All experiments are
conducted using PyTorch 2.0 on a machine with 2 RTX 4090 GPUs. The detailed experimental settings and parameters are
as follows.

1.1. Datasets

We evaluate our proposed DFL-Dual on the following three benchmark datasets.
• MNIST [9]: A 10-class handwritten digit image classification dataset containing 60, 000 training images and 10, 000

testing images.
• Fashion-MNIST [13]: A 10-class fashion image classification dataset consisting of a training set of 60, 000 examples and

a test set of 10, 000 examples.
• CIFAR-10 [8]: A 10-class tiny image classification dataset containing 6, 000 images per class with 5, 000 training and
1, 000 testing images per class.
We consider a 10-client DFL system as in Figure 1 (a) in the main paper and adopt the same method in [4, 16] to

simulate different degrees of non-IID data distribution among clients. Specifically, the non-IID degree is captured by a
sample allocation probability p, with larger p indicating a higher non-IID degree.
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1.2. Models

We train various models to show the generality of DFL-Dual. Specifically, for MNIST and Fashion-MNIST, we train a CNN
(Conv2d(1 ∗ 6 ∗ 3) → ReLU → MaxPool2d(2 ∗ 2) → Conv2d(6 ∗ 25 ∗ 3) → ReLU → MaxPool2d(2 ∗ 2) → Linear(1225 ∗ 50)
→ ReLU → Linear(50 ∗ 10)), a fully connected neural network (FCN) (Linear(784 ∗ 500) → ReLU → Linear(500 ∗ 10) →
ReLU), and an LR classifier. For CIFAR-10, we use ResNet-18.

1.3. DFL Model Training Parameters

We train models for 15 global rounds on MNIST and Fashion-MNIST and 25 global rounds for CIFAR-10. In each global
training round, each client performs E (10 for MNIST and Fashion-MNIST, 1 for CIFAR-10) epochs of local training via
mini-batch SGD with a batch size of B = 100. Other hyper-parameters during local model training are inherited from the
default settings of Adam [7].

1.4. Evaluated Poisoning Attacks

We use both untargeted and targeted (backdoor) attacks to verify the effectiveness of DFL-Dual. The untargeted poisoning
attacks include:
• Label Flipping Attack: For each training sample on Byzantine clients, we flip its label c to c + 1 mod P , with P being

the total number of labels and c ∈ {1, 2, . . . , P}.
• Krum Attack [6]: Byzantine clients craft poisoned pre-aggregation local models with reference to benign ones, which

allows it to circumvent the defense of Krum.
• Back-Gradient Attack [11]: Byzantine clients craft a poisoned dataset for local training, resulting in the local model

exhibiting the largest loss on the benign dataset.
The targeted poisoning attacks are as follows, and we follow the same adversary setting in [15].

• Scaling Attack [1]: After accomplishing local model training on duplicated and triggered training examples, Byzantine
clients scale the pre-aggregation local models by a factor before sending them to benign clients.

• DBA Attack [14]: Byzantine clients decompose the trigger into different patterns and then embed them into their local
training data in a distributed manner.

• A little is Enough Attack [2]: The model update based on the Scaling Attack is cropped into a certain range to make it
harder to eliminate.

1.5. Baseline Aggregation Rules

We take the following aggregation methods as baselines. Notably, for those designed for CFL, we trim them to fit in the DFL
scenario.
• DFL [10]: Consensus algorithm based on graph connectivity is applied to aggregate neighboring pre-aggregation local

models.
• DFLTrust [4]: FLTrust uses an additional validation dataset to infer the model divergence. In our experiments, we trim the

original centralized FLTrust algorithm into the DFL setting, where each client uses its own local dataset as the validation
dataset with the same other settings in FLTrust.

• DFLDetector [15]: Same as the original FLDetector algorithm in CFL setting, each client predicts its neighbours’ model
update based on historical model updates, which is then used to detect Byzantine updates.

• Multi-Krum [3]: Each benign client selects Ki local update models with the smallest Euclidean distances to itself, then
averages and incorporates them to update its model. Multi-krum assumes it knows the number of malicious clients Zi of
each benign client i, and thus Ki = Ni − Zi, where Ni is the number of neighbors of client i.

• BridgeM [5]: Each client utilizes the coordinate-wise median as the screening rule within the DFL framework.
• IOS [12]: Each benign client computes the average of all neighbors’ models and then discards the furthest model from this

mean. This process repeats until Zi models are discarded, and output the average of remaining models.

2. Complete Results of Defense against Untargeted and Targeted Attacks
We present the experimental results of DFL-Dual against Untargeted and Targeted Attacks with different models trained on
various datasets in Table 1 and Table 2, respectively. They supplement Table 1 and Table 2 in the main paper, respectively.
The results validate that DFL-Dual consistently exhibits higher accuracy on benign testing data and lower ASR on testing
data with backdoor triggers than all baselines.



defense
Source MNIST Fashion CIFAR10

CNN FC LR CNN FC LR ResNet18
DFL (No Attack) 95.39 93.76 89.84 84.85 82.67 81.04 49.96

Label
Flipping

DFLTrust 18.28 1.1 1.11 12.8 53.21 1.23 10
DFLDetector 33.84 62.28 89.9 84.06 36.36 81.07 29.58
Multi-Krum 36.45 61.01 89.83 84.37 60.4 81 25.09

DFL 26.05 16.00 15.40 31.78 20.85 13.01 25.3
BridgeM 50.31 54 44.76 61.12 66.17 49.61 34.89

IOS 0.24 0.53 0.95 0.51 0.57 0.58 20.59
DFL-Dual 96.64 92.41 88.97 83.98 82.03 79.64 49.06

Krum

DFLTrust 20.01 43.71 1.11 14.76 64.33 0.03 10
DFLDetector 22.01 36.61 17.66 32.91 31.5 8.7 22.08
Multi-Krum 30.35 36.51 24.01 27.42 32.08 10.29 10

DFL 71.14 84.47 71.88 49.76 58.88 49.98 10
BridgeM 26.12 41.9 42.44 27.66 37.91 38.01 10

IOS 77.08 80.51 77.59 50.44 68.11 61.24 10
DFL-Dual 96.14 92.53 89.05 83.69 81.91 79.72 49.84

Back-
Gradient

DFLTrust 9.8 9.8 9.8 10 10 10 10
DFLDetector 9.8 10.51 14.74 10 11.75 11.32 10
Multi-Krum 9.8 11.18 15.61 10 10.17 12.33 11.72

DFL 25.81 44.52 56.05 19.41 27.39 26.67 10.03
BridgeM 22.17 46.96 47.72 28.23 35.65 37.33 15.70

IOS 10.52 68.25 42.17 12.33 34.59 35.66 19.29
DFL-Dual 95.14 92.41 88.99 83.73 81.99 79.72 49.1

Table 1. Complete results of Accuracies (%) under Untargeted Attacks.

defense
Source MNIST Fashion CIFAR10

CNN FC LR CNN FC LR ResNet18

Sc
al

in
g

DFLTrust 9.8/100 84.77/99.95 81.11/99.91 10/100 76.75/99.33 73.77/99.52 19.45/100
DFLDetector 67.06/99.75 89.41/3.02 86.50/3.33 69/91.94 81.71/1.9 80.32/2.2 20.85/85.66
Multi-Krum 96.92/99.99 93.60/0.67 89.89/0.89 56.89/98.35 83.92/95.93 81.11/1.55 31.62/53.49

DFL 49.61/100 91.11/100 88.88/99.98 61.78/98.91 82.47/98.76 81.3/99.19 18.7/79.14
BridgeM 72.02/99.96 91.48/100 89/100 57.3/98.34 81.56/95.98 80.71/98.68 26.23/65.86

IOS 11.01/97.43 90.59/99.99 86.95/99.97 81.74/91.85 80.24/85.41 81.06/1.5 30.78/53.64

DFL-Dual 96.21/0.50 92.44/0.79 88.97/1.00 84.83/1.70 82.47/1.36 79.68/1.61 49.01/4.44

D
B

A

DFLTrust 9.8/100 76.9/89.90 73.67/90.93 10/100 75.78/7.26 70.66/77.46 18.64/82.27
DFLDetector 34.06/70.46 89.41/2.87 86.99/4.30 84.97/4.21 81.67/3.06 80.35/2.37 17.53/82.59
Multi-Krum 96.89/0.43 93.70/0.67 89.87/0.75 84.93/3.34 81.99/1.34 81.12/1.41 26.28/58.76

DFL 9.8/100 89.93/99.01 88.49/99.64 10/100 81.53/95.85 80.84/98.09 17.87/87.49
BridgeM 22.17/100 91.54/5.07 88.93/1.26 28.23/91.6 81.48/17.19 80.36/2.64 15.7/80.08

IOS 97.04/0.29 93.61/40.78 89.88/0.86 82.13/1.91 79.03/72.62 81.16/1.46 25.87/62.34

DFL-Dual 96.54/0.48 92.45/0.82 89.06/0.91 83.38/2.53 81.97/1.77 79.58/1.48 48.79/4.35

A
L

itt
le

is
E

no
ug

h

DFLTrust 92.29/99.75 88.7/99.93 85.48/99.77 80.1/98.91 78.6/99.94 77.65/99.94 33.59/100
DFLDetector 92.34/8.74 90.58/3.35 87.02/4.44 83.08/14.74 81.83/2.62 79.96/2.49 36.94/100
Multi-Krum 95.25/0.72 93/72.01 89.68/70.5 84.38/7.42 80.85/3.98 81.16/7.02 38.62/97.64

DFL 95.01/85.35 92.81/92.97 89.80/95.82 81.55/86.25 83.73/27.43 75.13/86.58 45.66/99.67
BridgeM 95.66/5.60 93.26/81.29 90.48/99.3 83.27/28.74 83.3/36.51 82.57/90.99 48.44/89.38

IOS 96.95/0.53 93.18/71.06 89.93/1.36 84.31/5.9 83.18/5.65 81.14/5.07 45.05/89.82

DFL-Dual 95.59/0.55 92.65/0.89 89.03/0.96 83.88/2.16 82.26/1.66 81.08/1.91 50.01/4.78

Table 2. Complete results of Accuracies (%) under targeted Attacks.

3. Communication Topologies under Different Byzantine Percentages
We randomly distribute different percentages of Byzantine clients within the communication topology, ensuring connectivity
among the remaining benign clients. Figure 1 depicts the specific communication topology of the DFL system under various
percentages of Byzantine clients.
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Figure 1. Illustration of different percentages of Byzantine clients in the DFL system (with blue and red devices denoting benign and
Byzantine clients, respectively).
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Figure 2. Illustration of the communication topology for the extreme adversary setting (with blue and red devices denoting benign and
Byzantine clients, respectively).

4. Defense Performance under an Extreme Adversary Setting
For a more comprehensive evaluation of the effectiveness of the proposed DFL-Dual method, an extreme adversary scenario
with an 80% Byzantine presence is considered. Here, each benign client is solely connected to one remaining benign client,
as illustrated in Figure 2. Table 3 demonstrates the robustness of the proposed DFL-Dual method in this extreme setting,
exhibiting notably superior performance (higher accuracy and lower ASR) compared to other baselines.



MNIST Fashion CIFAR10 MNIST Fashion CIFAR10
defense

Source
CNN CNN ResNet18 defense

Source
CNN CNN ResNet18

DFLTrust 11.80 9.22 8.07 DFLTrust 9.8/100 10/100 19.83/88.56
DFLDetector 0.78 58.3 17.68 DFLDetector 89.37/99.84 83.7/1.7 21.6/90.21
Multi-Krum 0.72 17.49 45.13 Multi-Krum 92.08/99.97 77.46/99.6 20.4/89.92

DFL 2.37 15.21 14.71 DFL 11.35/100 35.64/96.72 20.05/79.45
BridgeM 23.53 31.96 23.72 BridgeM 49.43/98.96 41.27/95.75 11.34/91.99

L
ab

el
Fl

ip
pi

ng

IOS 24.83 22.9 43.29

Sc
al

in
g

IOS 11.1/100 20.17/49.27 22.99/76.7

DFL-Dual 95.97 84.31 45.08 DFL-Dual 95.92/0.72 84.5/6.04 43.61/4.42
DFLTrust 16.40 17.25 10 DFLTrust 9.8/100 10/100 20.93/80.88

DFLDetector 11.8 10 10 DFLDetector 88.26/99.15 83.12/1.98 19.5/84.36
Multi-Krum 50.8 52.4 10 Multi-Krum 95.94/0.71 84.88/1.44 20.59/88.43

DFL 11.9 9.58 10 DFL 52.35/100 10/50 17.89/82.23
BridgeM 10.28 33.17 10 BridgeM 71.17/38.44 34.72/35.82 12.74/96.14

K
ru

m

IOS 68.06 46.36 10

D
B

A

IOS 25.28/23.04 10/0.01 24.78/66.87

DFL-Dual 95.93 84.05 44.41 DFL-Dual 96.03/0.63 84.21/5.92 45.5/4.78
DFLTrust 9.8 10 10 DFLTrust 94.1/99.9 73.91/99.79 35.64/100

DFLDetector 9.8 10 10 DFLDetector 92.67/99.89 83.39/3.26 35.72/100
Multi-Krum 9.8 10 10 Multi-Krum 96.08/4.2 75.88/96.52 35.94/99.96

DFL 10 38.73 10 DFL 83.3/46.08 47.71/47.9 44.34/99.97
BridgeM 9.8 10 10 BridgeM 84.27/65.75 68.63/53.46 41.78/96.27

B
ac

k-
G

ra
di

en
t

IOS 29.77 13.05 10
A

L
itt

le
is

E
no

ug
h

IOS 96.02/2.06 84.37/1.81 41.53/99.99

DFL-Dual 95.86 84.18 45.05 DFL-Dual 96.18/0.62 86.23/2.67 46.24/4.32

Table 3. Accuracies/ASRs (%) under both Untargeted and Targeted Attacks under the Extreme Adversary Setting.
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