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Appendix
1. More Experimental Results

1.1. Quantitative Analysis on Vocabulary Space.

We demonstrate that our method CaR has a larger vocabu-
lary space compared to the methods fine-tuned with mask
annotations. Here we compare our method with OVSeg [5],
which is fine-tuned on ImageNet [14] and COCO [6] with
a pre-trained CLIP backbone for the task of referring im-
age segmentation. We believe that referring expressions
(e.g., “the person in the red shirt” or “the cat in the mir-
ror”) refers to a specific segment using a broad vocabu-
lary. We conduct a comparative analysis between a ro-
bust open-vocabulary segmentation benchmark, OVSeg [5],
and CaR, utilizing standard referring image segmentation
benchmarks [9, 12, 19]. We note that RefCOCO and COCO
share the same set of images so OVSeg fine-tuning on
COCO may not be counted as zero-shot on RefCOCO. The
results, as detailed in Table A, demonstrate that CaR signif-
icantly surpasses OVSeg in performance. This disparity in
performance suggests that CaR encompasses a more expan-
sive vocabulary space than OVSeg.

1.2. Evaluation without Background

Following [7], our methodology benefits from using back-
ground queries in CLIP [13] classification to suppress
false positives (predictions not belonging to the input text
queries), enhancing segmentation results. Nevertheless, for
more comprehensive comparison, we also assess our ap-
proach using an alternate evaluation setting, previously es-
tablished, which omits the background class. Consequently,
less emphasis is placed on object boundaries in this setting.
We test our method on two datasets: Pascal VOC [3] with-
out background (termed VOC-20) and Pascal Context [10]
without background (termed Context-59). This setting tests
the ability of various methods to discriminate between dif-
ferent classes. Our method CaR significantly outperforms
previous methods on VOC-20 and Context-59, where all
methods use the same setting that ignores the background

Models RefCOCO RefCOCO+ RefCOCOg
val testA testB| val testA testB| val test(U) val(G)
22.58 19.38 25.63‘ 19.13 15.74 25.30‘27.87 29.09 28.31

33.57 35.36 30.51|34.22 36.03 31.02|36.67 36.57 36.63

OVSeg [5]
CaR(Ours)

Table A. Comparison to mask-supervised open-vocabulary
methods on referring image segmentation in mIoU. CaR is bet-
ter than the comparison method, OVSeg, in all splits of the three
benchmarks.

Is VLM #Additional

pre-trained?  Images w/o Background

VOC-20 Context-59

Model

GroupViTT [18] X 26M 79.7 23.4
PACL [11] v 40M 72.3 50.1
TCL [2] v 15M 71.5 30.3
MaskCLIPT [20] v - 74.9 26.4
ReCo' [16] v - 57.5 223
CaR (Ours) v - 914 39.5

Table B. Comparison with methods under the setting where
background is ignored. We compare CaR with prior work on
VOC-20, Context-59 in a setting that considers only the fore-
ground pixels (decided by ground truth). Our method shows com-
parable performance to prior works despite only relying on pre-
trained feature extractors. |: numbers are from [2].

class. We reached out to the PACL authors to confirm that
they did not evaluate background.

2. Implementation Details of CAM

In this paper, we integrate two kinds of gradient-based
CAM, i.e., Grad-CAM [15] and CLIP-ES [7], respectively.

Integration with Grad-CAM. When integrating Grad-
CAM [15] into our framework, we first extract the image
and text feature vectors v, = fr(z),vy, = fr(h) from
the image and text encoder f;(-), fr(-) given an image x
and text queries h. We compute a similarity score be-
tween the image and text features using the dot product
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s = softmax (v, -v}] ), where softmax is applied along the di-
mension of v. This score s quantifies the alignment (a.k.a
similarity) between the image x and the text h as perceived
by the CLIP model. Here h contains multiple queries. To
integrate Grad-CAM into our framework, we first compute
the gradients of the similarity score with respect to the fea-
ture maps of the image encoder by:

_ 0Os
g_aAkv

where A represents the feature maps and g denotes the gra-
dients. Then we compute the neuron importance weights by
average-pooling the gradients:

KRR
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Here, oy, is the neuron importance weights and Z is the
number of pixels in each feature map. We then calculate a
weighted combination of the feature maps A* and the neu-
ron importance ov:

L = ReLU (Z akAk> ,

k

an activation function ReL U is applied to filter out all neg-
ative activations. Specifically, we use the feature map af-
ter the first normalization layer of the last residual block to
compute the gradients for CAM.

Integration with CLIP-ES. In summary, the CLIP-
ES [7] we adopted is composed of a Grad-CAM and a
class-aware attention-based affinity (CAA) module. The
CAA module is introduced to enhance the vanilla multi-
head self-attention (MHSA) for the Vision Transformer
in CLIP. Given an image, class-wise CAM maps M, €
RM*® for each target class ¢ and the attention weight
wattn ¢ Rhwxhw are obtained from MHSA. For the at-
tention weight, which is made asymmetric due to the use of
different projection layers by the query and key, Sinkhorn
normalization [17] is applied (alternately applying row-
normalization and column-normalization) to convert it into
a doubly stochastic matrix D, and the symmetric affinity
matrix A can be derived as follows:

_D+DT
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A , where D = Sinkhorn(W®*™). (1)

For the CAM map M, € R"*™, a mask map for each target
class ¢ can be obtained by thresholding the CAM with A.
Then a set of bounding boxes can be generated based on
the thresholded masks. These boxes are used to mask the
affinity weight matrix A, and then each pixel can be refined
based on the masked affinity weight and its semantically

similar pixels. This refinement process can be formalized
as follows:

Mgff = B.® A" - vec(M,), 2)

where B, € R represents the box mask obtained from
the CAM of class ¢, ® denotes the Hadamard product, ¢ in-
dicates the number of refining iterations, and vec(+) denotes
the vectorization of a matrix. It should be noted that the
attention map and CAM are extracted in the same forward
pass. Therefore, CAA refinement is performed in real time
and does not need an additional stage. Our implementa-
tion uses the attention maps from the last 8 layers of Vision
Transformer for CAA.

3. Implementation Details of Visual Prompts

The Python code of visual prompts is shown in Algo-
rithm A, which is at the end of the supplementary material.

4. Breakdown of Background Tokens

We break down the background tokens into 3 sub-categories
for ablation study (experiment results are shown in the main
manuscript in Table 6):

* Terrestrial: [‘ground’, °‘land’, ‘grass’, ‘tree’,
‘mountain’, ‘rock’, ‘valley’, ‘earth’,‘terrain’, ‘forest’,
‘bush’, ‘hill’, ‘field’, ‘pasture’, ‘meadow’, ‘plateau’,
‘cliff’, ‘canyon’, ‘ridge’, ‘peak’, ‘plain’, ‘prairie’, ‘tun-
dra’, ‘savanna’, ‘steppe’, ‘crag’, ‘knoll’, ‘dune’, ‘glen’,
‘dale’, ‘copse’, ‘thicket’]

e Aquatic—-Atmospheric: [‘sea’, ‘ocean’, ‘lake’, ‘wa-
ter’, ‘river’, ‘sky’, ‘cloud’, ‘pond’, ‘stream’, ‘lagoon’,
‘bay’, ‘gulf’, ‘fjord’, ‘estuary’, ‘creek’, ‘brook’, ‘reser-
voir’, ‘pool’, ‘spring’, ‘marsh’, ‘swamp’, ‘wetland’,
‘glacier’, ‘iceberg’, ‘atmosphere’, ‘stratosphere’, ‘mist’,
‘fog’, ‘rain’, ‘drizzle’, ‘hail’, ‘sleet’, ‘snow’, ‘thunder-
storm’, ‘breeze’, ‘wind’, ‘gust’, ‘hurricane’, ‘tornado’,
‘monsoon’, ‘cumulus’, ‘cirrus’, ‘stratus’, ‘nimbus’]

* Man-Made: [ ‘building’, ‘house’, ‘wall’, ‘road’,
‘street’, ‘railway’, ‘railroad’, ‘bridge’, ‘edifice’, ‘struc-
ture’, ‘apartment’, ‘condominium’, ‘skyscraper’, ‘high-
way’, ‘boulevard’, ‘lane’, ‘alley’, ‘byway’, ‘avenue’,
‘expressway’, ‘freeway’, ‘path’, ‘overpass’, ‘underpass’,
‘viaduct’, ‘tunnel’, ‘footbridge’, ‘crosswalk’, ‘culvert’,
‘dam’, ‘archway’, ‘causeway’, ‘plaza’, ‘square’, ‘station’,
‘terminal’ |

5. Implementation Details of Mutual Back-
ground for Pascal Context

Our approach involves creating a list of background queries
to minimize false positive predictions in mask propos-
als. However, in the Pascal Context dataset [10], many
“stuff” categories (e.g. sky, ground, sea) serve as back-
ground queries for “object” categories (e.g. bird, car, boat).



Directly removing these ’stuff’ categories from the back-
ground query list and generating object and stuff masks
using CAM leads to noisy results due to the lack of false
positive background suppression. To address this issue, we
adopt a mutual background strategy. In this method, ob-
ject and stuff masks are produced separately, using object
categories as the background queries for stuff masks and
vice versa. This technique not only maintains the benefit
of reducing false positives but also significantly enhances
performance in the Pascal Context dataset.

6. Implementation Details of Referring Image
Segmentation.

We use ViT-B/16 as the backbone of the visual encoder
for both the mask proposal generator and mask classifier,
and use circle and background blur as the visual
prompts for the inputs of mask classifier. The 7, 6, A
were set to (0.5, 0.3, 0.5), (0.2, 0.1, 0.5), (0.5, 0.1, 0.6)
for refCOCO, refCOCO+ and refCOCOg, respectively. All
splits of these three datasets share the same set of hyper-
parameters. We note that we do not apply SAM for refer-
ring image segmentation.

7. More Visualization Results

7.1. Visualization results on different post-
processors

Figures A and B present a comparative visualization of
the post-processing techniques Conditional Random Field
(CRF) and Segment Anything Model (SAM) [4], applied
to randomly chosen samples from the VOC [3] and COCO
Object datasets [1]. Initial observations reveal that the ap-
plication of CRF in CaR facilitates the generation of high-
quality masks, albeit with notable limitations in delineating
boundaries between distinct semantic masks. The integra-
tion of SAM enhances the precision of these masks, yield-
ing clearer and more well-defined boundaries. Neverthe-
less, the implementation of SAM is not without drawbacks;
it occasionally leads to false negative predictions, stemming
from mismatches between CaR raw masks and SAM can-
didate masks (the matching algorithm is introduced in the
main manuscript), or false positive predictions due to the
overly coarse nature of SAM masks. Meanwhile, we find
SAM is not very sensitive to stuff classes, so combining
SAM on Pascal Context will not lead to much increase in
mloU.

7.2. Visualization comparison for different open-
vocabulary segmentation methods.

Figure C presents a qualitative comparison of open-
vocabulary segmentation results for a variety of non-
standard subjects, including unique characters, brands, and
landmarks. These subjects are notably distinct from com-
mon objects. The Grounded SAM [8] method demonstrates

proficiency in segmenting prominent objects with precision,
yet it often misclassify these segments. The OVSeg [5] ap-
proach also generates low-quality segmentation masks and
inaccurate class predictions. In contrast, our methodology
CaR excels by creating high-quality masks with accurate se-
mantic class predictions, showcasing its superior capability
in the realm of open-vocabulary segmentation.

8. Limitation

The primary limitation of our method is that its perfor-
mance is bounded by the pre-trained VLM. For example,
since the CLIP model utilizes horizontal flipping augmen-
tation during training, it becomes challenging for our model
to successfully distinguish between the concepts “left” and
“right”. However, we believe that this issue can be easily
resolved through adjustments, such as incorporating better
data augmentation techniques during the pre-training phase.

9. Future Potentials and Broader Impact

CaR is simple, straightforward yet highly efficient. To
enhance its performance further, we provide two ways to
explore. First, incorporating additional trainable modules
such as Feature-Pyramid Networks can significantly im-
prove its capability in handling small objects. Second,
since our method is fundamentally compatible with various
Vision-Language Models (VLMs), it presents an intrigu-
ing opportunity to investigate integration with other VLMs.
Moreover, CaR can serve the purpose of generating pseudo-
labels for other open-vocabulary segmenters.
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Figure A. Comparison of different post-processors on randomly selected images from PASCAL VOC.



Figure B. Comparison of different post-processors on randomly selected images from COCO Object.
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Figure C. Visualization comparison of different open-vocabulary segmentation methods.



Algorithm A Pseudo-code of CLIP as RNN in PyTorch style.

import cv2

import numpy as np

import torch

from scipy.ndimage import binary_ fill holes
def apply_visual_prompts (

image_array,

mask,
visual_prompt_type=('circle’),
visualize=False,

color=(255, 0, 0),
thickness=1,
blur_strength=(15, 15)):

prompted_image = image_array
inv_mask = (1 - mask)[:, :, None]

if

if

if

if

if

if

"blur’ in visual_prompt_type:
# blur the part out side the mask
# Blur the entire image
blurred = cv2.GaussianBlur (prompted_image,
blur_strength, 0)
# Get the sharp region using the mask
sharp_region = cv2.bitwise_and(
prompted_image,
prompted_image,
mask=np.clip (mask, 0, 255)))
# Get the blurred region using the inverted mask

blurred_region = (blurred » inv_mask)
# Combine the sharp and blurred regions
prompted_image = cv2.add(sharp_region,

blurred_region)
"gray’ in visual_prompt_type:
gray = cv2.cvtColor (prompted_image, cv2.
COLOR_BGR2GRAY)
# make gray part 3 channel
gray = np.stack([gray, gray, gray], axis=-1)
# Get the sharp region using the mask
color_region = cv2.bitwise_and(
prompted_image,
prompted_image,
mask=np.clip (mask, 0, 255)
# Get the blurred region using the inverted mask
inv_mask = 1 - mask

gray_region = (gray * inv_mask)
# Combine the sharp and blurred regions
prompted_image = cv2.add(color_region,

gray_region)
"black’ in visual_prompt_type:
prompted_image = cv2.bitwise_and(
prompted_image,
prompted_image,
mask=np.clip(mask, 0, 255))
’circle’ in visual_prompt_type:
mask_center, mask_height, mask_width = mask2chw (

mask)

center_coordinates = (mask_center[1l],
mask_center[0])

axes_length = (mask_width // 2, mask_height //
2)

prompted_image = cv2.ellipse (prompted_image,
center_coordinates,
axes_length, 0, 0, 360,
color, thickness)
"rectangle’ in visual_prompt_type:
mask_center, mask_height, mask_width = mask2chw (
mask)
center_coordinates = (mask_center[1],
mask_center[0])
start_point = (mask_center([l] - mask_width //
2, mask_center[0] - mask_height // 2)
end_point = (mask_center[l] + mask_width //
2, mask_center[0] + mask_height // 2)
prompted_image = cv2.rectangle (prompted_image,
start_point,
end_point,
color, thickness)
’contour’ in visual_prompt_type:
# Find the contours of the mask
# fill holes for the mask
mask = binary_fill_holes (mask)
contours, hierarchy = cv2.findContours (mask, cv2
.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw the contours on the image
prompted_image = cv2.drawContours (
prompted_image, contours, -1, color,
thickness)

return prompted_image
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