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Supplementary Material

Sec. A provides an extensive elucidation of our method,
including details of the cognitive encoder supervision
method, the one-hot reference attention mechanism, and
an in-depth analysis of the network architectures govern-
ing the denoising U-Net and ControlNet. In Sec. B, we
present comprehensive quantitative comparisons between
the proposed method and established models, including the
recently introduced DiffBIR [11]. Additionally, our inves-
tigation delves into the impact of introducing multiple gen-
erated reference images. We provide the results of a user
study in the form of voting results and assessments of image
quality at the pixel level. Sec C showcases more visualiza-
tion examples, extensively demonstrating the effectiveness
of our method. Finally, we talk about the future work in D.

A. Detailed Illustration of our Method
A.1. Cognitive Encoder Supervision

As aforementioned in the main paper, we use Te (Te ≤ Tl)
tokens, preceding the class token L [tcls] (inclusive), ex-
tracted from the CLIP language embedding L ∈ RB×Tl×Cl

for supervision. B, Tl, and Cl denote batch size, token num-
ber, and channel number, respectively. If there are insuffi-
cient supervision tokens, we use the class token for end-
filling. The loss function for training the cognitive encoder
is expressed as:

LCE = ∥E −L′∥22 , (1)

where

L′ =

{
Padding (L,L [tcls]) , if tcls < Te;

L [(tcls − Te) : tcls] , if tcls ⩾ Te.
(2)

We observe that employing L directly as supervision
for the cognitive embedding E (setting Te = Tl) hin-
ders the acquisition of cognitive information, as depicted
in Figure A.1. In this scenario, the generated reference im-
ages might prove irrelevant to low-resolution (LR) images.
This limitation stems from the variability in caption length,
which leads to Q-Former’s learnable queries inadequately
capturing semantic information at corresponding positions.
To mitigate this issue, we propose using the last Te tokens
for supervision for two reasons. Firstly, the last Te tokens in
the CLIP text embedding inherently encapsulate an overar-
ching representation of all preceding words [14], facilitated
by the causal attention mechanism. This mitigates the re-
quirement for a strict one-to-one correspondence between
query ordering and semantic representation, thus enabling
more effective learning by the queries. Secondly, within the
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Figure A.1. Reference images generated by cognitive encoders
with different supervision methods.

Number of Queries Gen-score↑
Te = 30 0.5983
Te = 40 0.6048
Te = 50 0.6147
Te = 60 0.6110
Te = 77 0.6082

Table A.1. Reference image quality assessment using different
numbers of learnable queries.

supervision target L′, the last query consistently aligns with
the class token, thereby preserving the full representational
capacity of the class token. Compared to the direct utiliza-
tion of L [tcls] or single class token, our approach of em-
ploying the last Te tokens for supervision presents a more
accurate understanding of LR images, which is supported
by both Figure. 5 in the main paper and Figure A.1.

We investigate the impact of the number of learnable
queries, denoted as Te, in our cognitive encoder on the
generation of high-quality reference images. This analy-
sis involve the examination of 200 randomly selected low-
resolution test images by varying the query number from 30
to 77. It is noted that the setting of Te = 77 in L′ differs
from using L for supervision. This distinction arises from
the fact that the final tokens of L′ are expanded with class
tokens when the caption is not sufficiently lengthy. The
results presented in Table A.1 demonstrate that our cogni-
tive encoder achieves optimal performance when Te = 50
(where “Gen-score” is defined in the main paper). Hence,
we establish Te = 50 as the default value. Notably, the
quality of the generated images begins to decline for Te >
50, as also evidenced in Figure A.2. This decline might be
attributed to increased learning complexity associated with
a higher number of tokens.
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Figure A.2. Reference images generated by cognitive encoders with different numbers of learnable queries.
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Figure A.3. The architecture of one-hot reference attention in the
All-in-Attention (AiA) module.

A.2. One-Hot Reference Attention

The reference image contains high-definition textures that
maintain consistent semantics with the corresponding LR
image. However, not all features from the reference im-
age are useful for LR recovery. The conventional attention
mechanism calculates the weighted sum of all queries in
value features, potentially leading to a blurring effect [19].
To address this issue, we introduce one-hot attention in the
reference module to enhance the LR image with the most
pertinent reference feature.

The one-hot attention mechanism is depicted in Fig-

ure A.3, where Q, K, and V denote the query, key, and
value features, respectively. We represent the LR control
and reference image control at the i-th scale as Xi and Ri.
Q ∈ RB×Tx×C and K,V ∈ RB×Tr×C are derived from
Xi,Ri. The similarity S ∈ RB×Tx×Tr between Q and K
is computed with normalized inner product:

S = ⟨Q,K⟩ . (3)

We derive the one-hot map H ∈ RB×Tx×Tr along the Tr

dimension of S and record the maximum values as T ∈
RB×Tx . The final output of the one-hot attention is then
expressed as:

Zout = ZeroConv [(HV )⊙ T ] , (4)

where ⊙ denotes element-wise multiplication. It is note-
worthy that we opt not to use softmax and, instead, employ
the correlation matrix T to diminish less similar features
while amplifying those that are potentially valuable. Addi-
tionally, to prevent the newly introduced attention compo-
nents from influencing the well-established representation
of Stable Diffusion [15] during early training, we integrate
zero convolutions [22] at the end.

A.3. Network Structure

Denoising U-Net. The denoising U-Net in the proposed
Cognitive Super-Resolution (CoSeR) network is depicted
in Figure A.4. In our architecture, we adopt the All-in-
Attention (AiA) module, replacing all original attention
modules present in both the middle and decoder compo-
nents of the Stable Diffusion denoising U-Net. It is cru-
cial to highlight that cognitive embedding is utilized across
all attention modules in the denoising U-Net, extending be-
yond solely the AiA modules.
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Figure A.4. Network structure of the denoising U-Net in the proposed CoSeR framework.
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Figure A.5. Network structure of ControlNet in the proposed
CoSeR framework.

ControlNet. We utilize ControlNet [22] to generate multi-
scale control features for both LR and reference images.
As illustrated in Figure A.5, we mirror the weights and
structure of the denoising U-Net in the ControlNet. Fol-
lowing [22], zero convolutions are incorporated at the be-

ginning and end of the ControlNet module. Subsequently,
the resulting control features are directed to the All-in-
Attention (AiA) modules situated within the middle and de-
coder components of the denoising U-Net, excluding U-Net
Decoder Block D, which lacks attention modules. Impor-
tantly, cognitive embedding is also employed in the Con-
trolNet module.

B. Additional Experiments

B.1. Quantitative Comparisons to Official Models

For fair comparisons, we conduct a re-training of real-
world super-resolution (SR) models using the ImageNet [4]
dataset in the main paper. Remarkably, our CoSeR model
achieves the highest performance. To provide a comprehen-
sive analysis, we compare CoSeR against the officially re-
leased models: RealSR [8], Real-ESRGAN+ [17], SwinIR-
GAN [10], BSRGAN [21], FeMaSR [3], DiffBIR [11], and
StableSR [16]. It is noted that we exclude the comparison
with DiffBIR on the ImageNet Test2000 dataset due to po-
tential data overlap with its official training set. Addition-
ally, all diffusion-based models, including LDM, DiffBIR,
StableSR, and CoSeR, employ 200 sampling steps. As out-
lined in Table B.2, across various evaluation metrics such
as FID [6], DISTS [5], LPIPS [23], CLIP-Score [14], and
MUSIQ [9], our method consistently excels, positioning
CoSeR as the superior and more robust approach.

B.2. Comparisons to Re-trained DiffBIR

As an extension to the quantitative comparisons provided
above, we further conduct a comparative analysis with Diff-
BIR [11], specifically re-trained using our ImageNet train-



Datasets Metrics RealSR Real-ESRGAN+ SwinIR-GAN BSRGAN FeMaSR DiffBIR StableSR CoSeR

ImageNet
Test2000

FID↓ 86.36 39.37 44.86 49.94 45.19 − 24.70 19.41
DISTS↓ 0.2649 0.1915 0.2000 0.2043 0.1995 − 0.1608 0.1482
LPIPS↓ 0.4519 0.3122 0.3327 0.3401 0.3403 − 0.2979 0.2863

CLIP-Score↑ 0.6242 0.7642 0.7325 0.7126 0.7272 − 0.8459 0.8755
MUSIQ↑ 50.18 61.92 57.60 64.37 60.27 − 63.20 65.51

RealSR [2]

FID↓ 157.85 106.24 105.99 111.25 106.08 90.30 96.39 80.82
DISTS↓ 0.2529 0.2021 0.1969 0.2081 0.2125 0.1932 0.1899 0.1826
LPIPS↓ 0.3672 0.2805 0.2755 0.2801 0.2688 0.2967 0.2639 0.2438

CLIP-Score↑ 0.7458 0.8425 0.8425 0.8304 0.8473 0.8414 0.8531 0.8545
MUSIQ↑ 60.40 66.68 65.93 68.35 67.51 69.20 69.25 70.29

DRealSR [18]

FID↓ 148.58 97.60 98.94 110.53 95.71 86.49 83.36 71.22
DISTS↓ 0.2673 0.2121 0.2056 0.2033 0.2016 0.1959 0.2034 0.1977
LPIPS↓ 0.4212 0.2973 0.2946 0.3062 0.2777 0.3075 0.2960 0.2702

CLIP-Score↑ 0.7360 0.8623 0.8571 0.8498 0.8680 0.8630 0.8729 0.8766
MUSIQ↑ 54.28 66.30 66.74 67.64 67.60 68.64 69.57 70.18

Table B.2. Quantitative comparisons to officially released models on both ImageNet Test2000 and real-world benchmarks RealSR and
DRealSR. The best results are highlighted in bold and the second best results are in underlined.

Datasets Methods DISTS↓ LPIPS↓ CLIP-Score↑ PSNR↑ SSIM↑ FID↓ MUSIQ↑
ImageNet
Test2000

DiffBIR 0.1523 0.3156 0.8683 21.12 0.5366 21.30 67.40
CoSeR 0.1482 0.2863 0.8755 22.28 0.5998 19.41 65.51

RealSR DiffBIR 0.1907 0.2727 0.8379 20.49 0.5511 78.31 68.63
CoSeR 0.1826 0.2438 0.8545 21.24 0.6109 80.82 70.29

DRealSR DiffBIR 0.2008 0.2980 0.8581 19.85 0.4934 68.21 68.60
CoSeR 0.1977 0.2702 0.8766 19.95 0.5350 71.22 70.18

Table B.3. Quantitative comparisons between CoSeR and re-trained DiffBIR. The better results are highlighted in bold.
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Figure B.6. The voting results obtained from 23 users. The per-
centage of votes chosen along with the corresponding numerical
count are adjacent to the pie chart.

ing set. The results displayed in Table B.3 underscore the
superiority of CoSeR across three benchmarks, demonstrat-
ing better performance across nearly all metrics.

B.3. Quantitative Comparisons on Widely Used
Benchmark Datasets

To further validate the generalization ability of our method,
we validated it on some common benchmark datasets:
Set5 [1], Set14 [20], BSD100 [12], Urban100 [7], and

Manga109 [13]. Unlike traditional methods that utilize
official LR images created by bicubic downsampling, we
generated LR-HR pairs via the Real-ESRGAN pipeline to
better replicate real-world scenarios. As illustrated in Ta-
ble B.4, our method outperforms others in all benchmarks,
with the exception of Set5. The deviation in Set5 results can
be attributed to its limited number of test images, introduc-
ing variability.

B.4. Voting Results of User Study

As detailed in the main paper, we invite 23 subjects to dis-
cern the visually superior result among the four SR candi-
dates generated by Real-ESRGAN+, FeMaSR, StableSR,
and CoSeR. This user study encompasses 20 real-world
low-resolution images sourced from the Internet or captured
via mobile phones, resulting in a total of 20×23 votes gath-
ered. The depicted voting results in Figure B.6 unequivo-
cally illustrate the superior performance of our CoSeR.

B.5. Number of Reference Images

We investigate the influence of using multiple generated ref-
erence images on the quality of SR results. Employing the



Datasets Metrics BSRGAN DASR StableSR CoSeR

Set5
DISTS↓ 0.2514 0.2204 0.2492 0.2356

FID↓ 157.42 131.22 188.52 139.53
CLIP-Score↑ 0.6885 0.7521 0.7338 0.7962

Set14
DISTS↓ 0.2252 0.2319 0.2117 0.2087

FID↓ 161.55 168.52 151.77 134.74
CLIP-Score↑ 0.7355 0.7527 0.8029 0.8106

BSD100
DISTS↓ 0.2601 0.2530 0.2363 0.2200

FID↓ 169.06 157.22 133.49 114.78
CLIP-Score↑ 0.6427 0.6752 0.7119 0.7429

Urban100
DISTS↓ 0.2460 0.2492 0.1775 0.1681

FID↓ 81.85 82.24 50.95 47.75
CLIP-Score↑ 0.8360 0.8362 0.9152 0.9265

Manga109
DISTS↓ 0.1516 0.1390 0.1124 0.1101

FID↓ 59.27 51.75 41.64 40.96
CLIP-Score↑ 0.8900 0.9128 0.9311 0.9283

Table B.4. Quantitative comparisons on widely used benchmark
datasets.

Number of Ref. Images FID↓ MUSIQ↑ MANIQA↑
1 19.80 64.21 0.2107
2 19.54 64.85 0.2169
3 19.58 64.92 0.2170

Table B.5. Results of using multiple reference images.

Datasets Metrics
Real-

ESRGAN+ FeMaSR StableSR CoSeR

ImageNet
Test2000

PSNR↑ 22.64 20.95 22.24 22.28
SSIM↑ 0.6268 0.5674 0.6093 0.5998

RealSR PSNR↑ 21.93 20.45 21.19 21.24
SSIM↑ 0.6497 0.6061 0.6247 0.6109

DRealSR PSNR↑ 20.47 18.46 19.86 19.95
SSIM↑ 0.5781 0.5036 0.5487 0.5350

Table B.6. Pixel-level PSNR and SSIM assessment of SR quality.

same LR input, we randomly sample noise maps to create
several reference images utilizing identical cognitive em-
beddings. The findings presented in Table B.5 demonstrate
that introducing a greater number of reference images yields
improved performance. However, it’s noteworthy that the
improvement plateaus when using 2 or 3 reference images,
suggesting that these images already contain sufficient high-
definition textures to guide the process. As a result, we rec-
ommend utilizing 2 reference images as an optimal balance
between quality enhancement and computational efficiency.

B.6. Pixel-level Image Quality Assessment

While acknowledging that PSNR and SSIM metrics ex-
hibit a weak correlation with human perception, particu-
larly for large-scale super-resolution tasks, we present the
corresponding results in Table B.6 for reference purposes.
Our CoSeR achieves favorable results. The All-in-Attention
(AiA) module contributes to competitive or superior pixel-

level fidelity compared to other diffusion-based models like
DiffBIR and StableSR, as shown in Table B.3 and Ta-
ble B.6.

C. Qualitative Comparisons
We provide visual comparisons on ImageNet Test2000
dataset (Figures D.7, D.8, D.9, D.10), real-world or un-
known degradation type images (Figures D.11, D.12), Re-
alSR dataset (Figure D.13) and DRealSR dataset (Fig-
ure D.14). Our CoSeR obtains outstanding visual perfor-
mance.

D. Future Work
The cognitive-based recovery process extends beyond
super-resolution (SR) tasks; it is beneficial for various vi-
sual tasks such as deblurring, denoising, and inpainting.
Our future work includes expanding its application to more
diverse image restoration tasks. Additionally, prevalent SR
algorithms based on diffusion models often require a large
number of sampling steps for higher visual quality. Ad-
dressing the challenge of accelerating the sampling process
without compromising SR performance is also a focal point
of our ongoing research.
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Figure D.7. Qualitative comparisons on ImageNet Test2000 dataset (part 1/4).
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Figure D.8. Qualitative comparisons on ImageNet Test2000 dataset (part 2/4).
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Figure D.9. Qualitative comparisons on ImageNet Test2000 dataset (part 3/4).
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Figure D.10. Qualitative comparisons on ImageNet Test2000 dataset (part 4/4).
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Figure D.11. Qualitative comparisons on real-world or unknown degradation type images (part 1/2).
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Figure D.12. Qualitative comparisons on real-world or unknown degradation type images (part 2/2).
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Figure D.13. Qualitative comparisons on RealSR dataset.
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Figure D.14. Qualitative comparisons on DRealSR dataset.
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