DyBluRF: Dynamic Neural Radiance Fields from Blurry Monocular Video

Supplementary Material

1. Appendix

We provide the following content in this supplementary:
¢ Detailed description of disocclusion weights;

* Principles and technical details of EVC;

¢ Detailed description of scene flow constrains Lgs;

¢ Final loss;

¢ More information on the dataset;

* Detailed quantitative and qualitative results;

* Results on sharp inputs;

* Limitations.

A. Disocclusion weights

Recall in Eq. 7 of our main paper, the dynamic MLP ad-
ditionally outputs a disocclusion weight W; = (wgy, Why)-
The weights wgy and wyy € [0, 1] represent the probability
of occlusion for a spatial point. They determine the confi-
dence regarding occlusion occurring from a specific times-
tamp in the current frame to the corresponding timestamp
in adjacent frames. Certainly, a value closer to 0 signi-
fies minimal chances of the point being occluded during
that interval. Conversely, a value closer to 1 indicates a
higher likelihood of the point experiencing occlusion or dis-
occlusion. Specifically, for a timestamp ¢{ from frame i,
where [ € {1,---,n} represents the specific timestamp
in an exposure time, the disocclusion weights are denoted
as Wy = (w ;77 w71, To obtain the disocclusion
weight map in 2D plane, the weight along the ray r} is used
for volume rendering with opacity from adjacent frames:

W) = [ (90, (01 (5) (-l ] ().

)]
where j € N (i) = {i+1,i—1} denotes the adjacent frames
of frame 1, r;%] represents the warped ray mentioned by
Eq. 14 in the main paper.

For each timestamp within the exposure time, the dis-
occlusion weight map W7 *(r) is computed using Eq. 1.
Subsequently, we average these maps to yield the motion
disocclusion weight W7 ~%(r) for cross-time rendering:
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B. Extreme Value Constraints (EVC)

In this section, we will introduce the operational principles
and technical details of EVC. In Fig. 4 of our main paper,
we highlight an issue encountered while predicting depth
and optical flow from blurry inputs. The depth prediction
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Figure S1. Principle of EVC.

network and optical flow prediction network often mistak-
enly interpret the blurry edges in the RGB image as fore-
ground, resulting in inaccuracies in data priors. To enable
model learning accurate scene geometry by using these in-
accurate data priors, we propose the EVC data prior con-
straint method.

Fig. S1 provides an illustration of a simulation experi-
ment on the working principle of EVC. We suppose that
each exposure time is represented by three sharp images
(i.e., n = 3), with only one green square foreground mov-
ing from left to right in the scene, while the rest is a blue
background. Given an input blurry frame, the model pro-
duces 3 RGB images and depth maps within the exposure
time. We consider a pixel position in blurry edges of the in-
put frame, where the pixel changes the affiliation from the
background (in C; and Cs) to the foreground (in C3). To
ease the discussion, we set the depth of the foreground to
be 10 while that of the background to be 100 respectively.
An intuitive practice to simulate the depth of input blurry
frames may be averaging the three depth values to a value
of 70. However, due to the mistaken interpretation of blurry
edges, MiDaS [8] identifies the red point as the foreground,
leading to its predicted depth value of 10. Therefore the
intuitive constraint cannot work for our method, manifest-
ing as ‘foreground-fatter’ depth map predictions as shown
in the first row of Fig. 4(b) in the main paper. In order to
accommodate the depth prediction results, we should rec-
ognize a position as on the foreground (the green square),
once it is covered by the foreground in a certain timestamp
during the exposure time. This can be expressed as choos-
ing the minimum depth value at the red-pointed position
among the three sharp images (as EVC does). This ap-



proach enables learning accurate scene geometry and ren-
dering a sharp depth map, as shown in the second row of
Fig. 4(b) in the main paper.

The process of data prior constraint for optical flow
closely resembles that of depth. The model generates an op-
tical flow map for each timestamp. This map represents the
scene motion from the timestamp of current exposure time
to the corresponding timestamp of adjacent exposure time.
However, in contrast to depth where foreground values are
typically smaller than background ones, optical flow for the
foreground often exceeds that of the background. Accord-
ing to the principle and process of EVC, we use the maxi-
mum optical flow as the simulated blurry optical flow and
compare it with the ground truth predicted by RAFT [10].
In practice, we obtain the optical flow by projecting the pre-
dicted 3D scene flow onto a 2D plane.

C. Scene flow modeling details

Recall in Sec. 3.4 , Ly is used as a regularization loss for
the scene flow calculated by Eq. 13 in the main paper. Ly
consists of three components: scene flow cycle consistency,
spatial-temporal smoothness, and minimal scene flow.

Scene flow cycle consistency enforces the forward scene
flow fi!(j) of sampled 3D points at timestamps ¢{ consis-
tent with the backward scene flow 12 (i) at the correspond-
ing location at timestamps ¢ :
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where lej denotes the disocclusion weights used to re-
duce consideration of occlusion points.

The spatial-temporal smoothness is designed to maintain
continuity in scene flow both spatially and temporally. To
achieve spatial smoothness, we encourage consistency be-
tween the scene flows of adjacent spatial points. Specifi-
cally, we compute L1 loss between scene flows sampled at
two neighboring spatial points along the ray r!. For tempo-
ral smoothness, we minimize the sum of forward and back-
ward scene flow for each sampled spatial point to ensure
the smoothness of predicted DCT trajectories. The spatial-
temporal smoothness can be expressed as:
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where the first term denotes spatial smoothness and the sec-
ond term denotes temporal smoothness. N (x) represents
the neighboring spatial points of point x along the ray rj.

Finally, due to minor scene changes between adjacent
frames, we additionally apply a minimal scene flow con-
straint to minimize the predicted 3D scene flow:

Loin= > Y G- )
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D. Final loss

Considering the RGB image rendering, temporal consis-
tency of dynamic scenes, data-driven constraints, and scene
flow modeling, the final training loss of our method is:

L= ERGB + Ecross + )\dataﬁdala + >\sf£sfa (6)

where .
Lrcs = Ligs + Lros + AstLRrap
Ly = /\cycﬁcyc + Lsmooth + Lmin )

Adatas Asts Asts Acye denote the weights for Laawa, Lo, LRgp
and Ly, respectively. During training, Aga multiplies 0.1
every b0k iterations to prevent the model from overfitting to
data priors.

E. Dataset

(7

We conduct experiments using dynamic scenes from the
Stereo Blur Dataset [15]. Similar to most datasets in image
deblurring [5, 9], the Stereo Blur Dataset generates motion
blur by averaging a sharp high frame rate sequence. In prac-
tice, this dataset is captured using a ZED stereo camera ca-
pable of acquiring high frame rate (60fps) image sequences
of dynamic scenes at a resolution of 1280 x 720. However,
because the frame rate is still not high enough, direct aver-
aging may lead to some unrealistic artifacts. Therefore, the
dataset employs a video frame interpolation method [6] to
increase the frame rate to 480fps. Subsequently, averaging
is performed on different numbers (17, 33, 49) of consecu-
tive frames to generate motion blur, with the sharp center
frame among the consecutive frames serving as the ground
truth for the blurry image.

However, not all scenes in the Stereo Blur Dataset can
be used in our work. That is because of two issues: 1)
Many scenes within the dataset are static and lack moving
objects. 2) Several scenes have minimal camera motion, re-
sulting in a lack of motion blur caused by camera movement
and insufficient motion parallax to obtain camera parame-
ters. Therefore, we select 6 dynamic scenes from the Stereo
Blur Dataset that are tailored for NeRF-based methods.
These scenes encompass both camera and object motion
blur, showcasing varied size object movements like play-
ing seesaw, walking, and skating. We employ COLMAP to
acquire camera parameters from the image sequences and
downsample the image resolution to 512 x 288 for exper-
iments. Similar to NSFF, we process the input blurry im-
age sequences through the MiDaS to obtain depth maps,



Sailor Seesaw

Methods

Street

Children Skating Basketball

PSNRT SSIMT LPIPS| PSNR{ SSIM{ LPIPS| PSNRT SSIM{ LPIPS| PSNRT SSIMT LPIPS| PSNR{ SSIM{ LPIPS| PSNRT SSIMT LPIPS,

BAD-NeRF [11] 16.96 0.631 0.333 20.58 0.795 0.220 20.27 0.670
HyperNeRF [7] 18.56 0.743 0.275 20.25 0.779 0.182 19.99 0.662
22.32 0.810 0.247 18.14 0.775 0.158 19.06 0.669
NSFF [3] 19.06 0.726 0.290 19.92 0.807 0.178 23.42 0.800

DVS [1]

0.190 18.10 0.650 0.386 19.08 0.691 0.345 17.99 0.731 0.271
0.137 21.36 0.762 0.279 19.52 0.702 0.319 21.21 0.818 0.136
0.176 24.00 0.823 0.307 26.18 0.907 0.124 24.10 0.880 0.143
0.121 24.55 0.846 0.259 27.96 0.923 0.116 25.06 0.903 0.122

RoDynRF [4] 12.69 0.584 0.317 23.71 0.894 0.116 19.80 0.719

0.161 15.02 0.609 0.382 21.66 0.831 0.160 22.82 0.850 0.166

DyBIuRF (ours) 23.50 0.860 0.115 24.56 0.882 0.075 26.88 0.906

0.068 25.57 0.884 0.092 27.94 0.917 0.072 25.28 0.920 0.050

Table S1. Quantitative comparisons for every scene against all dynamic NeRF baselines. The best performance is boldfaced, and the

second is underlined.

Sailor Seesaw Street Children Skating Basketball
Methods
PSNR1 SSIMT LPIPS] PSNRT SSIM{ LPIPS] PSNRT SSIMt LPIPS| PSNR{ SSIM1 LPIPS] PSNRT SSIM{ LPIPS| PSNR{ SSIMT LPIPS,
[13]+[3] 1896 0.728 0.252 20.19 0.827 0.149 23.39 0.790 0.125 24.88 0.864 0.182 26.91 0.922 0.067 24.70 0.903 0.084
[14]+[3] 22.60 0.805 0.150 21.31 0.856 0.135 23.06 0.791 0.114 24.27 0.853 0.195 26.88 0.917 0.078 24.64 0.903 0.076
[13]+[4] 17.16 0.703 0.227 23.63 0.892 0.090 19.75 0.727 0.149 17.41 0.665 0.282 23.22 0.869 0.110 23.38 0.868 0.114
[14] + [4] 17.28 0.772 0.225 23.85 0.893 0.080 19.69 0.700 0.153 18.39 0.683 0.226 22.54 0.849 0.126 23.51 0.867 0.098

DyBIuRF (ours) 23.50 0.860 0.115 24.56 0.882 0.075 26.88 0.906

0.068 25.57 0.884 0.092 27.94 0.917 0.072 25.28 0.920 0.050

Table S2. Quantitative comparisons for every scene against dynamic NeRF methods with blurry image preprocess. The best

performance is boldfaced, and the second is underlined.

use RAFT to generate optical flow maps, and employ an
instance segmentation network (Mask r-cnn [2]) to derive
motion masks for moving objects.

F. Detailed results

In this section, we present detailed quantitative and qual-
itative results of the comparative experiments in our main
paper. In Tab. 1 of the main text, we have shown the
average quantitative results of all baselines across the 6
scenes. Here, we will provide individual quantitative re-
sults for each scene, as depicted in Tab. S1 for blurry in-
puts and Tab. S2 for deblurring preprocess inputs. We also
conduct comparative experiments with BAD-NeRF, which
is a deblurring NeRF method designed for static scenes, in
Tab. S1. Due to its inability to represent dynamic scenes, the
performance of BAD-NeRF is much lower than ours. We
also include detailed qualitative comparison results, as illus-
trated in Fig. S2 and Fig. S3. One can see that our method
performs the best quantitative results in most scenes. Al-
though our approach slightly trails NSFF in the Skating
scene, the qualitative results of our method in the Skating
scene are better than NSFF, regardless of whether blurry
inputs or pre-processed sharp inputs, as shown in the sec-
ond row of Fig. S2 and Fig. S3. We speculate that slightly
lower metrics in the Skating scene of our method could be
attributed to the background in the Skating scene having an
extensive low-texture area with less motion blur, which can-
not fully showcase the superiority of our method in handling

motion blur input through metrics. However, the qualitative
results demonstrate that our method outperforms all base-
lines, especially in handling motion blur in dynamic scenes.

From Tab. S1 and Tab. S2, we can also observe that pre-
processing blurry images with 2D deblurring methods may
yield inferior results compared to directly using blurry in-
puts. This phenomenon arises from the 2D deblurring meth-
ods disrupting the temporal consistency of scene informa-
tion, causing inaccurate scene representation in NeRF. This
further reflects that our approach effectively ensures spatial-
temporal consistency in dynamic scenes.

G. Results on sharp inputs.

Although our method is specifically tailored for dynamic
scenes with motion blur, it remains capable of achieving
comparable results to existing methods when dealing with
sharp inputs. We evaluate our method on the Nvidia Dy-
namic Scene Dataset [12] without blur, configured with
n = 1 for sharp image input. Here, we compare with NSFF,
which performs second best in Tab. 1 in the main paper.
As shown in Tab. S3, our method is marginally better than
NSFF even in sharp inputs, which underscores our sustained
efficacy even in sharp inputs. Meanwhile, our method sig-
nificantly outperforms NSFF under blurry inputs in Tab. 1 .
That demonstrates the effectiveness of our method in han-
dling both motion blur and representing dynamic scenes.



HyperNeRF DVS NSFF RoDynRF DyBIuRF (ours) Ground truth

Figure S2. Qualitative comparisons against all baselines. Compared to existing dynamic NeRF methods, our method generates novel
view images that are more faithful to the ground truth images, with less blur in both static and dynamic regions.

[13]+ [3] [14]+[3] [13]+ [4] [14]+ [4] DyBIuRF (ours) Ground truth

Figure S3. Qualitative comparisons against dynamic NeRF baselines incorporated with 2D deblur method. Even if we use prepro-
cessed input blurry images by 2D deblur approaches to train existing dynamic NeRF methods, our method also generates more reliable
novel views, with less blur in both static and dynamic regions.

highly complex and fast motion. As shown in Fig. S4, the
rapid movement of the human leg causes extreme blurriness
in the input image. This challenges our method in two as-
pects: firstly, excessive information loss of foreground may

A i g
Blurry input Rendered result Ground truth

lead to the depth and flow prediction networks being unable
Figure S4. Limitation. It is challenging to restore a sharp image to identify foreground objects, thereby affecting the repre-
when input blur is caused by extreme object motion (e.g., the leg). sentation of dynamic scenes. Secondly, the model tends to

incorrectly learn the scene geometry supervised by such ex-
tremely blurry images, and gets stuck in the incorrect local
minimum. In the future, we aim to explore combining ex-
plicit representations to enhance the temporal coherence of
Although our method can handle most of the motion blur in dynamic objects to solve this problem.

the input images, it might not be able to synthesize high-

quality novel views when the motion blur is caused by

H. Limitations



Methods Balloon1 Balloon2 Jumping Playground

PSNRT SSIMt LPIPS| PSNRT SSIMt LPIPS| PSNRT SSIMt LPIPS| PSNRT SSIMt LPIPS|
NSFF [3] 2196 0.791 0215 2427 0.825 0222 2465 0.872 0.151 2122 0780 0212
DyBIuRF (ours) 21.90 0.781  0.181 2492 0.880 0.117 2621 0.901 0.091 23.64 0.861 0.113
Methods Skating Truck Umbrella Average

PSNRT SSIMt LPIPS| PSNRT SSIMt LPIPS| PSNRT SSIM{ LPIPS| PSNRT SSIM{ LPIPS|
NSFF [3] 29.29 0936 0.129 2596 0.863 0.167 2297 0.769 0295 2433 0.834 0.199
DyBIuRF (ours) 2836 0913 0.087 30.01 0946 0.043 2419 0831 0.163 25.60 0.873 0.114

Table S3. Quantitative results on the non-blur dataset with NSFF. The better performance is boldface.
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