
Exploring Orthogonality in Open World Object Detection

Supplementary Material

A. Experimental settings
A.1. Datasets

For open world object detection, we follow [49, 85] to
adopt the superclass-mixed benchmark (M-OWODB) [30]
and the superclass-separated benchmark (S-OWODB) [21],
both consisting of 80 classes grouped into four sequential
tasks, as summarized in Tab. 5. Specifically, M-OWODB
is built on COCO [38] and PASCAL VOC [13], and it uses
all VOC classes and data as the first task, and the remain-
ing COCO classes as the three successive tasks. However,
this can lead to data leakage across super-categories, e.g.,
most vehicle-related classes belong to the first task, but the
truck class is introduced in the second task. To address this,
S-OWODB uses a stricter split of the COCO dataset that
ensures a clear separation of super-categories across tasks,
allowing for a fairer open-world evaluation.

For incremental object detection, which prioritizes the
incremental learning capability, we adopt the class splits
of PASCAL VOC 2007 proposed in [65]. It contains three
two-stage incremental settings of 10 + 10, 15 + 5, and 19 + 1
classes. See the header of Tab. 3 for detailed class splits.

A.2. Metrics

We use the common evaluation metrics in [21, 71, 85].
Among them, mean average precision (mAP) and unknown
class recall (U-Recall) at IoU threshold of 0.5 serve as the
two main metrics. In addition to these, wilderness impact
(WI) [9] at IoU threshold of 0.8 and absolute open-set error
(A-OSE) [53] at IoU threshold of 0.5 are employed to mea-
sure unknown class confusion. Specifically, WI shows the
change in precision due to unknown misclassifications:

WI =
PK

PK∪U
− 1, (8)

where PK is the precision on known classes, and PK∪U is
the precision when unknown classes are included. On the
other hand, A-OSE measures the number of unknown object
instances that are misclassified into known classes.

A.3. Implementation details

This section describes some key implementation details,
organized by model architecture, training, and test proto-
cols. Most of these are consistent with RandBox [71].

Model architecture. We adopt a Fast R-CNN [17] like
architecture, which uses a ResNet-50 [23] pretrained on Im-
ageNet [62] to extract a feature map for each input image,
and then applies RoI pooling with 500 random proposals.

Task IDs (→) Task 1 Task 2 Task 3 Task 4

M-OWODB split VOC [13]
Classes

Outdoor,
Accessories,
Appliances,

Truck

Sports,
Food

Electronic,
Indoor,

Kitchen,
Furniture

classes 20 20 20 20
training images 16551 45520 39402 40260
test images 4952 1914 1642 1738
training instances 47223 113741 114452 138996
test instances 14976 4966 4826 6039

S-OWODB split
Animals,
Person,
Vehicles

Outdoor,
Accessories,
Appliances,

Furniture

Sports,
Food

Electronic,
Indoor,
Kitchen

classes 19 21 20 20
training images 89490 55870 39402 38903
test images 3793 2351 1642 1691
training instances 421243 163512 114452 160794
test instances 17786 7159 4826 7010

Table 5. Task composition in M-OWODB (top) and S-OWODB
(bottom). The semantics of each task split and the number of asso-
ciated training and test images and object instances are displayed.

The resulting proposal features are forwarded to a cascade
of detection heads that iteratively refine the detection re-
sults. Each head contains a self-attention module, followed
by a regression head, an objectness head, and a classifica-
tion head. The classification head is a linear classifier, while
the objectness head uses Batch Normalization [27].

Training scheme. The training process is supervised by
ground truth annotations and pseudo-labels estimated from
the matching scores. We incorporate standard training ob-
jectives including focal loss [39] and regression loss, along
with a decorrelation loss with a weight of 1.0. The model
is optimized by the AdamW optimizer [46] with a batch
size of 12 and an initial learning rate of 2.5 × 10−5. The
training iterations and learning rate schedules in open world
and incremental object detection follow [31, 71]. It is worth
noting that our Fast R-CNN based model is efficient to train,
taking about 36 hours to finish training on M-OWODB with
four NVIDIA 2080 Ti GPUs. In comparison, a DETR [4]
based model such as CAT [49] takes almost 48 hours on the
same benchmark with eight NVIDIA 3090 GPUs.

Test protocol. During inference, we remove the predic-
tion randomness using 10000 pre-defined object proposals
covering various locations, shapes, and scales. These pro-
posals are then pruned by non-maximum suppression at IoU
threshold of 0.6. The final detection results are selected by
a score threshold default to 0.15, following the code of [71].

Task 1 U-Recall (↑) K-mAP (↑) WI (↓) A-OSE (↓)

Base model 8.4 59.8 0.0244 5922
Polar 13.2 61.1 0.0254 5026
Unknown 14.6 60.2 0.0265 4862
Feature 18.2 61.3 0.0276 4455

Task 2
U-Recall mAP (↑)

(↑) Previously
known

Current
known Both

Base model 6.4 54.7 36.7 45.7
Feature 13.5 55.0 37.7 46.3
Feat + pred 17.2 54.6 37.3 45.9
Ours (sum) 23.5 55.3 38.7 47.0
Ours (max) 26.3 55.5 38.5 47.0

Table 6. Ablation studies of detailed designs on M-OWODB.
Polar and unknown denote the two subdesigns in Sec. 3.3, namely
polar coordinate based feature decomposition and unknown class
discrimination. Whereas ours (sum) and ours (max) denote our full
method with two different routing strategies related to Sec. 3.5.

B. Additional results
B.1. Ablation studies

This section presents additional ablation experiments on
detailed designs (e.g., the routing algorithm) and hyperpa-
rameter sensitivity, as a complement to Sec. 4.4.

Effectiveness of feature orthogonalization designs. To
justify the two subdesigns in feature orthogonalization, we
perform a set of ablation studies in Tab. 6. For polar coordi-
nate based feature decomposition, it leads to clear improve-
ments across three metrics (U-Recall, K-mAP, and A-OSE)
with only a slight increase in WI. For the confidence-based
unknown discrimination strategy, it significantly improves
both U-Recall and A-OSE over the standard softmax-based
approach (alternative methods like Gaussian modeling [85]
are not compared because they do not directly apply to our
spherical class feature space). In the meantime, it maintains
competitive K-mAP and WI to existing baselines.

Effectiveness of orthogonal designs with incremental
learning. The main text has only conducted ablation of the
calibration layer (by comparing “Ours” and “– calibration”)
under the incremental setting. This is because the other
designs (feature and prediction orthogonality) are curated
for open-set problems rather than incremental learning, and
thus can be tested on the first task. For comprehensiveness,
we include an additional ablation study in Tab. 6, where
both orthogonal designs continue to improve unknown class
recall during incremental learning of the second task.

Effectiveness of the routing algorithm. To demonstrate
the effectiveness of the maximum softmax probability [25]
for routing calibration parameters, we compare it to a more
straightforward alternative that sums all corresponding class
probabilities as the task probability. Table 6 illustrates that

Method DINO Task 1 Task 4
U-Recall (↑) K-mAP (↑) K-mAP (↑)

Base model × 8.4 59.8 36.1
Ours × 24.6 61.3 37.9

Base model ✓ 10.1 59.6 38.7
Ours ✓ 23.5 61.9 40.0

Table 7. Influence of different backbones on M-OWODB. We
experiment with supervised or self-supervised (DINO) pretrained
backbones on the initial and final task of M-OWODB. Our method
remains effective with different pretrained backbones.

0.0 0.5 1.0 1.5 2.0 2.5

weight of Lorth

18

19

20

21

22

23

24

•
U

-R
ec

al
l

58

59

60

61

62

63

64

+
K

-m
A

P

Figure 6. Sensitivity to loss weight on M-OWODB. We vary the
weight of loss Lorth and report performance changes on Task 1.

while both methods significantly improve mAP, the maxi-
mum probability approach excels in U-Recall by incorpo-
rating prediction confidence. This can be understood intu-
itively with the following example: an object proposal with
uniformly high probabilities, i.e., high uncertainties on old
tasks, should be considered new and unknown.

Analysis of backbone. We chose ImageNet-pretrained
backbone following R-CNN based literature in [30, 50, 71].
Meanwhile, we recognize the concern with supervised pre-
training, and experiment with a self-supervised DINO [5]
pretrained backbone following [21, 49, 50, 85]. As shown
in Tab. 7, our method delivers competitive open-set and in-
cremental performance with new backbone, in line with the
good transferability of self-supervised pretraining.

Hyperparameter sensitivity. Since most of our hyper-
parameters (e.g., the score threshold for detection results)
follow RandBox, we focus on the one newly introduced hy-
perparameter, the weight of the decorrelation loss Lorth. Its
sensitivity analysis is shown in Fig. 6. As can be seen, the
inclusion of this new loss significantly improves U-Recall
without affecting K-mAP, confirming its effectiveness. On
the other hand, increasing the loss weight leads to a reduc-
tion in U-Recall, as the model may deviate from its main
training objective. Nevertheless, the resulting U-Recall is
still higher than the base one without the decorrelation loss.

Task 1 Task 2 Task 3 Task 4

O
ur

s
R

an
dB

ox

Figure 7. Qualitative results after different tasks of M-OWODB. Our method is compared with RandBox [71] in terms of known and
unknown object detections after each stage of M-OWODB. Each image pair uses the same score threshold to ensure a fair comparison.

Task 1 Task 2 Task 2 Task 3

O
ur

s
R

an
dB

ox

Figure 8. Illustrations of the incremental learning capability on M-OWODB. We compare with RandBox [71] in terms of known and
unknown object detections across two successive stage of M-OWODB. Each image uses the same score threshold for a fair comparison.

B.2. Visualization

Figure 7 compares our method with RandBox [71] on all
four tasks of M-OWODB. As can be observed, our model
successfully detects various unknown objects, including the

fire hydrant in the first image and the laptop in the third im-
age. Meanwhile, its performance remains advantageous for
known objects such as the dining table in the fourth image.
Note that there are also some common failures between the
two models (e.g., the skateboard in the second image and

the knife in the fourth image) that could be improved.
Additionally, our incremental learning capability is illus-

trated in Fig. 8, where we test two checkpoints before and
after incremental learning on the same image. The left two
columns show that our model can continuously incorporate
new class information (the backpack) to facilitate unknown
object discovery (the surfboard). The last two columns sug-
gest that, compared to RandBox, our model forgets less of
the old class (dining table) and even exhibits some degree
of knowledge consolidation as its object score increases.

C. Limitations
We would like to further discuss the limitations of our

work: (1) This work is limited to existing open world object
detection datasets [21, 30] to allow for more controllable
experiments, while there is a growing need for research on
scalability with larger models trained on more data. (2) The
problem formulation assumes that the current task identifier
is specified during training, which is not compatible with
setups with blurry task boundaries or unknown task identi-
fiers. (3) Our proposed method is scoped to the traditional
supervised training scheme and needs adaptation for recent
pre-training methods such as GLIP [34] and Detic [83].

