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A. Broader Impact and Limitations
Large multimodal models offer a wide range of benefits to
society, from enhancing visual navigation and medical diag-
nostics to increasing accessibility for individuals with visual
impairment. The in-context learning capabilities of Emu2
allow it to quickly adapt to new tasks or environments, even
with limited data, ushering in numerous potential applica-
tions. The generative capabilities of Emu2 can be highly
valuable to the creative industries.

However, there are potential downsides in more power-
ful multimodal models to be considered. The hallucination
issue of multimodal models may cause incorrect and unrea-
sonable predictions in certain cases. Emu2 may also gen-
erate harmful or biased content like other generative mod-
els [55] since the training data may be biased or contain
unsuitable content. We are actively working to enhance the
robustness of multimodal models, reduce model hallucina-
tions, improve the fairness of training data, and reduce toxic
data. We also call on the wider community to pay attention
to the potential social impact of multimodal models as they
are growing larger and stronger.

One of the limitations of Emu2 is that its in-context
learning capability could fail in some complex scenes or
tasks, e.g., counting in a crowd. Additionally, there is still
a gap between Emu2’s question-answering capability and
that of closed multimodal systems. For example, GPT-4V
achieves 67.7 MM-Vet score vs. Emu2’s 48.5, although al-
ready being state-of-the-art among public models. We be-
lieve there is much room to improve as the quality and quan-
tity of training data improve and as model scale continues
to grow.

B. More Pretraining Details
B.1. Dataset Details

In pretraining, we exclusively leverage image-text pairs and
video-text pairs for stage 1 training. We additionally lever-
age interleaved and language-only data altogether for stage
2. The integration of visual embeddings with text tokens
generates unified multimodal sequences. These sequences
are then structured by appending the tokens <s> and </s>
to denote the beginning and end of each sequence.

Image/Video-text Pairs. In the pretraining stage, we uti-
lize image-text pairs from LAION-2B [65] and CapsFusion-
120M [87], along with video-text pairs from WebVid-
10M [8]. During pretraining stage 2, each image or video
is randomly placed before or after its corresponding text

with a probability of 0.5, respectively. For each video, we
randomly sample 8 frames. To structure the visual embed-
dings, we append two special tokens, [IMG] and [/IMG],
to signify the start and end of the visual embeddings. In the
case of videos, where there are T frames, each frame is en-
coded into a set of visual embeddings, and a special token,
[VIDEO], is prepended to the start of the frame embedding
sequence. This design helps distinguish between multiple
images and video frames within the multimodal sequences.

Interleaved Image/Video-text Data. We harness the
Multimodal-C4 (MMC4) dataset [95] and the YT-
Storyboard-1B dataset [71] as expansive sources of image
and video-text interleaved data. This approach aims to un-
lock the in-context learning capability of multimodal mod-
els. For each MMC4 document, we randomly sample N = 8
images, accompanied by their corresponding sentences, to
construct a subsequence of L = 1024. During pretraining
stage 2, each image or frame is randomly positioned before
or after its corresponding text with a probability of 0.5. The
special tokens used in this interleaved data are consistent
with those employed in the image-text pair data.

Grounded Image-text Pairs. We curated a dataset of
grounded image-text pairs named CapsFusion-grounded-
100M, employing data from CapsFusion [87] processed
through the dataset construction pipeline proposed by
Kosmos-2 [57]. Additionally, we utilized the 20M GRIT
dataset introduced by Kosmos-2 [57]. To enhance the di-
versity and context of the dataset, we randomly positioned
each phrase before or after its corresponding coordinates
with a probability of 0.7. The bounding box can be rep-
resented using its top-left point (x1, y1) and bottom-right
point (x2, y2). We transform continuous coordinates into
224 discrete tokens [57], the coordinates of a sample box
can be formulated as <loc000><loc000><loc224><loc224>.
We added these tokens to the word vocabulary to facilitate
unified modeling with text. To distinguish grounding text
from regular text strings, we introduced two special tokens,
<coor> and </coor>, marking the beginning and end of
the bounding box coordinates. Moreover, to establish the
correct association between bounding boxes and their cor-
responding descriptive phrases, an additional set of special
tokens, <p> and </p>, was appended. To guide the model
in grounding text output to the provided image, we utilized
the special token <grounding>. This comprehensive set
of tokens and instructions enriches the training data for ef-
fective multimodal modeling and understanding.
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Language-only Data. To maintain text reasoning capa-
bilities, we engage in joint training with the language mod-
eling dataset Pile [26]. The entire text corpus from Pile is
preprocessed offline, and each training sample is tokenized
into 2048 tokens using the LLaMA tokenizer. We randomly
sample a total of 3.6 billion tokens for pretraining purposes.

B.2. Training Hyperparameters

We report the detailed training hyperparameter settings of
Emu2 during the pretraining in Table 6.

Configuration Emu2 Stage 1 Emu2 Stage 2

Visual Encoder init. EVA-02-CLIP-E-plus Emu2 stage 1
Multimodel Modeling init. LLaMA-33B Emu2 stage 1
Linear projection layer init. random Emu2 stage 1
Input image resolution 2242 4482 4482

Optimizer AdamW
Optimizer hyper-parameters β1 = 0.9, β2 = 0.95, eps = 10−6

Peak learning rate 1× 10−4, 3× 10−5, 5× 10−5 1× 10−5

Learning rate schedule cosine decay
Gradient clip 5.0
Training steps 35.2k 4.0k 20.35k
Warmup ratio 0.02 0.1
Global batch size* 6144, 768 12800, 6400, 3200, 800
Numerical precision bfloat16

Table 6. Summary of pretraining hyperparameters of Emu2 in
pretraining stages. Peaking leaning rates are 1 × 10−4 for the
linear projection layer, 3 × 10−5 for Multimodel Modeling, and
5 × 10−5 for Visual Encoder. *Global batch size: 1) 6144 for
image-text pairs and 768 for video-text pairs in stage 1. 2) 12800
for image-text pairs, 6400 for video-text pairs, 3200 for image-
text/video-text interleaved data, and 800 for language-only data in
stage 2.

B.3. Visual Decoding

B.3.1 Dataset Details

We utilize images in LAION-COCO [2] and LAION-
Aesthetics [1] to train the Visual Decoder. Images whose
resolution is smaller than 512 × 512 are filtered to prevent
generating low-quality results. We employ ratio-preserving
random scaling followed by random cropping of a square
portion from the scaled image to keep all training images
unstretched. The original image size and crop coordinates
are used as additional conditions following SDXL [58].

B.3.2 Training Hyperparameters

The detailed hyperparameters of visual decoding training
are summarized in Table 7.

Configuration Visual Decoding

Visual Encoder init. Emu2 stage 1
Visual Decoder init. SDXL-base
Encoder input image resolution 448× 448

Decoder output image resolution 1024× 1024

Optimizer AdamW
Optimizer hyper-parameters β1 = 0.9, β2 = 0.999, eps = 10−8

Peak learning rate 1× 10−4

Learning rate schedule log warm-up, linear decay
Gradient clip 1.0
Total training steps 8,000
Warmup steps 2,500
batch size 2,048
Numerical precision bfloat16

Classifier-free guidance 10%
Noise offset 0.1

Table 7. Summary of training hyperparameters of Emu2 Visual
Decoder. The Visual Encoder is frozen during training.

C. Instruction-Following Chat
C.1. Dataset Details

We used two types of training data, academic-task-oriented
data and multi-modal chat data, in instruction fine-tuning
of Emu2-Chat The academic-task-oriented datasets
we utilized comprise image captioning datasets such
as COCO Caption [18], and TextCaps [66], as well as
visual question-answering datasets like VQAv2 [28],
OKVQA [53], GQA [32], TextVQA [68], and multi-
modal classification data constructed in M3IT [45].
RefCOCO [34], RefCOCO+ [52] and RefCOCOg [52]
datasets are also used. The public multi-modal chat data
we use includes GPT-assisted visual instruction data
LLaVa [49] and LLaVaR [93], language instruction data
from ShareGPT [4] and Alpaca [72], and video instruction
data from VideoChat [44]. Beyond these, we constructed
instruction fine-tuning data from an analog clock reading
dataset [83]. For academic-task-oriented datasets, we use
the system message “You are a helpful assistant,

dedicated to provide concise and efficient

answers.”, and for the multi-modal chat data, the sys-
tem message is “You are a helpful assistant,

dedicated to delivering comprehensive and

meticulous responses.”.

C.2. Training Hyperparameters

The detailed training hyper-parameters of Emu2-Chat are
summarized in Table 8.

D. Controllable Visual Generation
D.1. Dataset Details

We use the grounded image-text pairs dataset, i.e.,
CapsFusion-grounded-100M and GRIT [57] for
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Configuration Emu2-Chat

init. Emu2
Input image resolution 448× 448

Optimizer AdamW
Optimizer hyper-parameters β1 = 0.9, β2 = 0.98, eps = 10−6

Peak learning rate 1× 10−5

Learning rate schedule cosine decay
Gradient clip 5.0
Training steps 8,000
Warmup steps 100
Global Batch size 768
Numerical precision bfloat16

Table 8. Summary of training hyperparameters of Emu2-Chat.

grounded text-to-image generation. We use SAM [36]
to obtain segmentation results for the correspond-
ing grounding boxes. We leverage InstructPix2Pix
constructed by [10] for image editing tasks. The
sample will be formulated as “<s>[IMG]embedding
of origin image[/IMG]instruct editing

prompt[IMG]embedding of edited

image[/IMG]</s>”. For the text-to-image task, we use a
filtered subset the CapsFusion [87], LAION-Aesthetics [1],
SA-1B [36], and LAION-High-Resolution [3].

For high-quality fine-tuning, our datasets were meticu-
lously sourced from premium sources, e.g., Unsplash [20],
and outputs from advanced text-to-image systems, e.g.,
Midjourney-V5 [54] and DALL-E-3 [9]. This comprehen-
sive approach ensured a diverse and rich dataset, comprising
approximately 500,000 instances of high-quality image-text
pairs, instrumental in refining and enhancing the aesthetic
quality of our Emu2-Gen model’s generated images.

D.2. Training Hyperparameters

We report the detailed training hyperparameter settings of
Emu2-Gen during the instruction-tuning in Table 9.
E. Evaluation Details
Pretrained Base Model. For few-shot evaluation of
Emu2, we adopt the Retrieval In-Context Example Selec-
tion (RICES) approach for choosing few-shot examples,
following Flamingo [5] and Emu [71]. The chosen few-shot
examples will be separated by “. ” and then placed ahead
of the test sample. We use the prompt ”[image] based

on the picture, [question] short answer:”.
For zero-shot evaluation, as no example is given, we find the
above simple prompt cannot effectively control the model
behavior and the model tends to output a sentence rather
than a word or phrase. Thus, we modify the prompt to
”[image] based on the picture, answer in one

word or phrase. [question] short answer:”.
This adjustment aligns the model’s output more closely
with the distribution of the tested datasets, where responses

Configuration Emu2-Gen stage1 Emu2-Gen QFT

init. Emu2 Emu2-Gen stage1
Input image resolution 448× 448

Optimizer AdamW
Optimizer hyper-parameters β1 = 0.9, β2 = 0.95, eps = 10−6

Peak learning rate 5× 10−5 1× 10−5

Learning rate schedule cosine decay
Gradient clip 1.0
Training steps 3k 0.9k
Warmup ratio 0.0
Global Batch size* 4096, 3584, 2048 2048, 1024, 2048
Numerical precision bfloat16

Table 9. Summary of training hyperparameters of Emu2-Gen.
*Dataset types are text-to-image pairs, grounded text-to-image and
image editing pairs.

typically consist of a succinct word or phrase. The splits
and metrics for each benchmark are detailed in Table 10.

Instruction-Following Chat. The evaluation of Emu2-
Chat follows the assessment method of Emu-I [71],
utilizing generation hyper-parameters with a beam size of
5. For video input, 16 frames are uniformly sampled as
visual conditions. In the question-answering benchmark
that requires short answers, we employ the system message
“You are a helpful assistant, dedicated to

provide concise and efficient answers.” along
with the output format control information used in [48].
In the benchmark for scoring with GPT-4, we use the
system message “You are a helpful assistant,

dedicated to delivering comprehensive and

meticulous responses.”. We provide an overview of
the evaluation benchmarks in Table 10.

Benchmark Task Split Metric

VQAv2 Scene understanding VQA Test-dev VQA score(↑)
VizWiz Scene understanding VQA Test-dev VQA score(↑)
GQA Understanding & reasoning VQA Test-dev EM(↑)
OKVQA External knowledge VQA Val VQA score(↑)
TextVQA Text-oriented VQA Val VQA score(↑)
Hateful Memes Meme classification Seen Test ROC AUC(↑)

RefCOCO Refer expression comprehension - Accuracy(↑)
RefCOCO+ Refer expression comprehension - Accuracy(↑)
RefCOCOg Refer expression comprehension - Accuracy(↑)

MSVD-QA Event understanding VQA Test EM(↑)
MSRVTT-QA Event understanding VQA Test EM(↑)

MMMU Massive multi-discipline QA Test Accuracy(↑)
SEED-Bench Image/Video multi-choice QA - Accuracy(↑)
MM-Vet Open-ended generation - GPT-4 score(↑)
TouchStone Open-ended generation - GPT-4 score(↑)

Table 10. Summary of the evaluation benchmarks.

Controllable Visual Generation. For all evaluation of
visual generation tasks, we use EulerDiscreteScheduler [33]
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with 50 diffusion steps. The classifier-free guidance scale is
set to 3.0. To evaluate on DreamBench [63], we select ex-
actly the same image for each object as chosen in Kosmos-
G [56]. Similarly to Kosmos-G, we also slightly modified
the original prompt with the prefix ”a” , for example, ”a
red {}” is modified to ”{} Make it red”

F. Qualitative Results
We present qualitative cases for Emu2-Gen in Figure 5-11
and for Emu2-Chat in Figure 12-14, respectively.

A photo of <the 
first dog>, <the 
second dog>,  
<the third dog> 
on the grass

A oil painting of 
<the first dog>, 
<the second 
dog>, <the third 
dog>

A photo of <the first 
dog>, <the second 
dog>, <the third 
dog> swimming 
under the water

Figure 5. Illustration of controllable visual generation of subject-
driven generation across multiple images with layout guidance.
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real image autoencode result real image autoencode result

Figure 6. Qualitative cases of image autoencoding.
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In this scene, a cyclist pedals through a sun-
dappled forest trail, with rays of light filtering 
through the dense foliage. The vibrant colors of 
the rider's gear harmonize with the natural hues 
of the surrounding flora.

A woman with natural beauty, her hair gently 
flowing, and a soft, genuine smile, standing in a 
real-world cherry blossom park.

cyber punk city street,all building made from 
translucent hologram glass material,pastel neon 
light,night scene with pastel purple and pink sky

Three minuscule explorers dwarfed by Ethereal 
monumental gigantic cliffs, minimalistic 
landscape, beige and gray snowscene , in the 
style of Andy Fairhurst.

Hand-painted castle, surrounded by trees, 
autumn, leaves flying

A panoramic view of the Grand Canyon at 
sunset, with the vast, layered rock formations 
dramatically lit by the fading golden sun, 
casting deep shadows and highlighting the rich, 
red hues of the canyon walls.

A dog that has been meditating all the time. Majestic waterfall in a lush, green tropical forest.

A Blue bird

Figure 7. Illustration of text-to-image generation.
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cute baby panda

<a panda>                                        on the beach      

Make it wearing 
a very cool 
sunglassess

<a panda>                                       and <a dog>                                     on the beach      

An oil painting of two animals                      , in the style of Van Gogh

floats above the 
forest

is capturing the 
bustling cityscape 
from a high rooftop, 
as the sun sets 
behind skyscrapers.

<A cartoon character> 

 walking in the street. It looks like 
hyper-realistic cityscape at night, with 
rain-soaked streets reflecting neon 
lights.

Replace the text 
background color 
with yellow

wearing a big hat 
on the beach in 
the evening

Figure 8. Illustration of zero-shot controllable visual generation with interleaved vision-language prompt.
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<A man>                                      with <a dog>                                     , and <a car>                                           in GTA-V

<a bear>                                wearing <a crown>                                           and <a bow tie>                       in the 
snow kingdom           

wearing <a hat> <a cat> and eating <a cake>

A photo of 
a birthday 
party in the 
garden, 

An image draw of <a dog> and <an emu> in the style of 

in the cover of 

A photo of <a man> holding the on the stage<words on neon lamp>

An anime draw of <a cat> and <a dog> in the style of 

<A singer>               in <a black cloth>               is singing into <microphone>    

<a pekingese>  is on the beach with an <umbrella> near the <sea>

<a dog> <a book> on the table

Figure 9. Illustration of zero-shot controllable visual generation with interleaved vision-language prompt.
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wearing a big sunglasses 
on the beach

floats above the 
forest

A person is riding a big  
horse on the water in 

front of mountain

is capturing the 
bustling cityscape 
from a high rooftop, 
as the sun sets behind 
skyscrapers.

<a dog>                                    
in a birthday 
party in the 
garden

A blue bird

<a bear>                      and <a tree>

in the Christmas party

Figure 10. Illustration of zero-shot video generation with interleaved vision-language prompt.
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S* in the jungle
S* with a city in the 

background S* on the beach S* in a chef outfitSubject (S*)

S* on top of the 
sidewalk in a crowded street

S* in the snow S* Make it purple
S* on a 

cobblestone streetSubject (S*)

Figure 11. Zero-shot subject-driven generation results on DreamBench.
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Emu2-Chat

Input Image

Input Text
Look at this sequence of three shapes. What shape should come 
as the fourth shape? Explain your reasoning with detailed 
descriptions of the first shapes.

Model Output

The first shape is a triangle, the second shape is a square, and the third shape is a 
pentagon. To find the next shape in the sequence, we need to identify a pattern. In this 
case, the pattern is that each shape has one more side than the previous shape. Therefore, 
the next shape in the sequence should have six sides, which is a hexagon.

Gemini Ultra The fourth shape should be a hexagon. The first shape is a triangle, the second shape is a 
square, and the third shape is a pentagon. The number of sides in each shape is increasing 
by one 

CogVLM-Chat The sequence of shapes could be interpreted in various ways, but one possible 
continuation is a square, as it complements the triangle and pentagon shapes by forming 
a 2D shape that can be thought of as a 'flat' version of the other three. The triangle 
represents a 3D shape, the pentagon a 5D shape, and the square a 2D shape.

Figure 12. Qualitative case of Emu2-Chat.
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Emu2-Chat

Input Image

Input Text

Compare the average kinetic energies of the particles in each sample. The diagrams 
below show two pure samples of gas in identical closed, rigid containers. Each colored 
ball represents one gas particle. Both samples have the same number of particles. 
Which sample has the higher temperature? Sample A or sample B?

Model Output

The sample with the higher temperature is Sample A, where the mass of each particle is 
32 u and the average particle speed is 600 m/s. In Sample B, the mass of each particle is 
32 u, but the average particle speed is 540 m/s. Since the temperature is a measure of the 
average kinetic energy of the particles, and kinetic energy is proportional to the square of 
the velocity, the higher the velocity, the higher the temperature. In Sample A, the higher 
average particle speed results in a higher temperature compared to Sample B.

GPT-4V Because the average particle speed in sample A is higher than in sample B (600 m/s vs. 
540 m/s), the particles in sample A have a higher average kinetic energy. Therefore, 
sample A has a higher temperature than sample B. 

CogVLM-Chat The kinetic energy of a particle is given by the formula (1/2)mv^2, where m is the mass 
and v is the velocity of the particle. Since the velocities of the particles in both samples 
are the same, the sample with the higher mass particles will have the higher kinetic 
energy. Therefore, Sample A, with particles having a mass of 32 u, will have a higher 
average kinetic energy than Sample B, which has particles with a mass of 32 u.

Figure 13. Qualitative case of Emu2-Chat.
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Emu2-Chat

Input Image

Input Text Imagine you are a guiding robot. 
Here is a photo I took. Please tell me how to get to the restroom.

Model Output

To get to the restrooms, you should follow the "Restrooms" sign in the picture. The sign 
is pointing to the left, so you should head in that direction to find the restrooms. If you 
need further assistance, please let me know, and I'll do my best to help you navigate to 
the restrooms.

CogVLM-Chat To get to the restroom, follow the direction indicated by the sign. It's located to the right 
of the sign and is labeled 'Restrooms'.

Qwen-VL-Chat To reach the restrooms, follow the directional arrow on the sign pointing downwards and 
towards your right side. The restroom should be located in that direction based on the 
information provided by the sign. Keep an eye out for any additional signs or markers 
indicating where the restrooms might be within this area of the building.

Figure 14. Qualitative case of Emu2-Chat.
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