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Supplementary Material

A. Implementation Details

Our implementation is based on FreeNeRF’s codebase*. We
use the plain Mip-NeRF [1] as our backbone and the maxi-
mum input frequency for positional encoding of coordinates
is 16. The learning rate is warmed up with a multiplier of
0.01 in the first 512 iterations.

B. Datasets and Metrics

ScanNet Dataset. We use three ScanNet [2] rooms
provided by DDP [4] for our experiments, which are
scene0710 00, scene0758 00 and scene0781 00. The
scene0758 00 contains 20 training views and the other
scenes contain 18 training views. All scenes are tested with
8 views. And the image size is 468×624.
Replica Dataset. Experiments on the Replica [5] dataset
use trajectories from eight scenes rendered by NICE-
SLAM [6]. They are office0, office1, office2, office3, of-
fice4, room0, room1 and room2. Each raw trajectory con-
tains 2000 frames, and we select 20 frames for training at
100 frame intervals starting at the 0-th frame, and test im-
ages at 100 frame intervals starting at the 50-th frame. All
images are downsampled to size 340×600.
Metrics. We normalize the RGB values between 0 and
1 to calculate the PSNR, SSIM, and LPIPS scores. The
formula of PSNR is −10 · log10(MSE). We compute the
SSIM score using the structural similarity function from the
scikit-image library†. In addition, LPIPS uses the computa-
tion method based on an AlexNet [3] provided in the open-
source library PerceptualSimilarity‡.

C. Geometry Consistency Prior Generation

Global Geometry Consistency Prior. Each camera’s cor-
responding region in 3D space is a square frustum, consist-
ing of eight vertices. Four of them lie in the near plane
and the remaining four in the far plane. We compute the
3D frustums of all training views and check if the vertices
of each frustum are inside the other. The purpose of this
is to find pairs of images that might have overlapping re-
gions. And we only perform image matching on such im-
age pairs. We use the LoFTR implementation in Kornia§

for image matching. Then we calculate the epipolar line
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Model setting PSNR ↑ SSIM ↑ LPIPS ↓ RMSE ↓

(1) ps = 8 20.92 0.709 0.208 0.213
(2) ps = 32 20.82 0.687 0.218 0.229

(3) M = 16 20.50 0.680 0.221 0.233
(4) M = 64 21.01 0.713 0.203 0.205

(5) ∆ = 0.05 20.62 0.709 0.211 0.221
(6) ∆ = 0.2 20.97 0.713 0.204 0.210

(7) default 21.03 0.719 0.209 0.213

Table 1. ScanNet results for different hyperparameters. The
default model uses the settings from the paper, i.e. ps = 16,
M = 32, and ∆ = 0.1. Models (1) to (6) ablate a single vari-
able separately.

of each keypoint and calculate the distance from the corre-
sponding point to the epipolar line. A match with an exces-
sive distance is obviously wrong, and we filter these wrong
matches using a threshold of 3 pixels. Next, we use least
squares to compute the 3D point that minimizes the distance
to the rays where the keypoint pair is located, and discard
the points with distances greater than 5cm. Finally all re-
maining points are projected onto their own rays to obtain
our geometric prior Dk.
Hierarchical Geometry Consistency Prior. We estimate
the monocular depth using the dpt hybrid 384 model from
the MiDaS repository¶. Since the output of DPT is relative
inverse depth, we use the formula 1−(Ddpt−Vmin)/(Vmax−
Vmin) to reverse the depth and normalize it. The Vmin and
Vmax are the minimum and maximum values of the DPT
output, respectively.

D. Hyperparameters

We perform additional ablation experiments for the patch
size in the global geometry consistency prior, the group
number in the group depth ranking loss, and the margin
in the ray weight mask regularization. The experimental
results with different hyperparameter settings are demon-
strated in Tab. 1.
Patch Size. The results with ps = 8 are very close to those
with ps = 16. However, when the patch size is increased by
32, there is a little performance degradation because the less
precise global geometry consistency constraints are used

¶MiDaS



Figure 1. The effect of global geometric consistency errors on
NeRFs. (a) and (b) are the top and front views of the point cloud,
respectively, where the gray points are from the sensor and the red
points are from image matching. (c) is a visualization of corre-
spondences. (d) is a rendering depth map of a test view. The ren-
dering depth map shows that the transparent glass is much deeper
than the surrounding wall. There is a typical mistake.

over a larger area. It indicates that the patch size should
not be set too large.

Group Number. In the experiment with M = 16, the per-
formance of both novel view synthesis and rendering depth
shows a significant degradation. Since only a few groups are
used, there will be depth values with large variance within
the same group, and these depths cannot be ranked against
each other, which limits the representation of the model.
And in the experiment with M = 64, the results simliar to
the default settings are got, and even the depth RMSE met-
ric is better than the default experiment. In fact, increasing
the number of groups is equivalent to increasing the dis-
crimination of depth. However, the group depth ranking
loss needs to compute a matrix of size M ×M , and we also
have to balance between the size of M and the amount of
computation.

Margin. Comparing the values of ∆ to 0.05, 0.1, and 0.2
respectively, we find that the performance degrades at the
strictest margin, i.e., ∆ = 0.05. It is consistent with our
analysis about ray weight mask regularization that overly
strict threshold settings can produce extreme cases where
there is a risk of negative optimization of this loss.

setting PSNR↑ SSIM↑ LPIPS↓ RMSE↓

40-views 35.12 0.921 0.052 0.186
30-views 33.55 0.901 0.054 0.208
20-views 32.14 0.902 0.053 0.217
10-views 25.53 0.787 0.115 0.250

Table 2. Quantitative results at different levels of sparseness.

(a) A training image (b) Monocular depth map of (a)

(c) A rendering image (d) A rendering depth map

Figure 2. The effect of hierarchical geometric consistency errors
on NeRFs. (a) is an image from the training set and (b) is the
monocular depth estimation result of (a). (c) and (d) are the ren-
dering image and depth map of a test view, respectively. Since the
monocular depth estimation network incorrectly predicts the depth
of the leaf-like texture on the wall, it causes the NeRFs to produce
incorrect rendering depth as well.

E. Effect of view sparsity

To further explore the effect of training view sparsity on
performance, we conduct experiments on view sparsity ef-
fects in office0 and room0 scenes from the Replica dataset,
following sparse view training. The results are reported in
Tab. 2, with 20-views as the paper’s default setting. Obser-
vations reveal that with sufficient training views (40-views
and 30-views), performance is similar. Conversely, inade-
quate training views covering the scene (10-views) lead to
a notable performance decline.

F. Limitations

Although our P2NeRF achieves stable and robust few-shot
NeRFs by leveraging prior knowledge from pretrained mod-
els, we find that biases from the pretrained models are also
introduced into the NeRFs.

The first effect comes from the coarse point cloud. Fig. 1
shows a typical bad case. Because of the strong specular
reflection on the glass windows, the point cloud from image
matching has a large error. After warming up, the volume
density distribution in this region presents a sickly pattern.
And since the true depth of the region is also large in the



training view, the hierarchical geometry consistency is not
able to constrain it effectively, which ultimately leads to a
significant offset in the depth of the glass window.

The second limitation results from the bias of monocular
depth estimation. Since monocular depth estimation suffers
from image texture, the hierarchical geometry consistency
constraint will distill it into NeRFs in the few-shot setting.
We visualize this phenomenon in Fig. 2. P2NeRF learns the
wrong knowledge when distilling relative ranking relations
from monocular depth. Since the training view of the scene
is sparse, the NeRFs themselves can’t optimize this mistake
away and eventually react in the rendering results.
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