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Outline
In this supplementary material, we will provide more

experimental results and the details that are not elaborated
on the main manuscript due to the length limitation of page:

• Sec. A: We present the implementation details of our
L4D-Track, that comprises extra metrics, core network
design and limitation analysis.

• Sec. B: We show the additional experiment results on
both NOCS-REAL275 and YCB-Video datasets, and
the qualitative results of more ablation study.

A. Implementation Details
A.1. Metrics for Instance-Level Pose Tracking

As mentioned in Sec. 4.1 in our main manuscript, we use
the extra evaluation metrics i.e., ADD and ADD-S for the
comparison of instance-level 6-DoF pose estimation, which
have been extensively utilized in prior works [6, 8].

1) ADD: ADD measures the distance between the
ground truth 3D model and corresponding posed points
using our predictions. The prediction is considered correct
if this distance is within a certain threshold. The calculation
process is defined as:

ADD =
1

m

∑
p∈M

||(R̃p+ t̃)− (Rp+ t)||, (1)

where M is the set of points in the 3D model, m is the
number of points p, R̃ and t̃ are the ground truth rotation
and translation, R and t are the predicted values.

2) ADD-S: For the symmetrical objects, such as bowl
and can, the average distance needs to be adapted for
multiple appropriate poses due to symmetry axes. In this
regard, the metric of ADD-S can be defined as follows:

ADD − S =
1

m

∑
p1∈M

min
p2∈M

||(R̃p2 + t̃)− (Rp1 + t)||, (2)

where p1 and p2 are the points on the 3D model.

A.2. Model Architecture

As to 2D and 3D backbone, we use CNN-based encoder-
decoder framework and the variant of PointNet++ [4],
respectively. Their detailed architecture is as follows:
1) 2D-Backbone:

Resnet(block, layer = [2, 2, 2, 2]) →
PSPModule([512,bins = (1, 2, 3, 6)]) → Dropout(0.15)
PSPUpsample([1024, 256, 64, 64, 32]) →
FP (mlp = [32, 512])

2) 3D-Backbone:

SA(npoints = 2048, redius = 0.2,mlp([64, 64, 128])) →
SA(npoints = 2048, redius = 0.4,mlp([128, 128, 256])) →
SA(npoints = 2048, redius = 0.4,mlp([256, 256, 512])) →
BatchNorm([512]) → Dropout(0.4)

We use LeakyReLU for each layer in set abstraction (SA),
feature propagation (FP) and batch normalization.

Figure 1. The detailed structure of pairwise implicit 3D space
representation (i.e., Sec. 3.2 in our manuscript).

As to the Pairwise Implicit 3D Shape Representation
in our core design, mentioned in Sec. 3.2 of the main
manuscript, we exploit a network Fη and a full-connnected
neural network FNPF to achieve pose hypothesis and shape
query reconstruction, respectively. The concrete pipline can
be found in Fig. 1.
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A"A video contains several  

objects with different 
categories on the desk."

"The scene shows a desk 
with  a laptop, a camera, and 

a coffee cup, along with a 
mug and a soda bottle ."

"The laptop is open, and 
the camera is sitting on 

top of it. A cup is also 
present for drinking ... ."

object-level caption:

scene-level caption:

video-level caption:
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"The items on the table 
include a laptop, two

bowls, two coffee cups, 
and a bottle of soda."

"The image stream shows a 
desk with several objects."

"The laptop is a black  
computer. And there are a 
bottle, two cups of coffee 

and two soup bowls on the 
table."

object-level caption:

scene-level caption:

video-level caption:
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A"The video shows a laptop 

computer, a camera, a
bowl ... on a kitchen floor."

"The scene shows a kitchen 
floor with a laptop, a bowl, 
and a cup, along with some 

bottles scattered around."

"The laptop is grey, and 
there are a brown cup , a 

bowl and a black camera ... 
on the floor next to it."

object-level caption:

scene-level caption:

video-level caption:
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"A video contains several  

video-level caption:
Figure 2. More visualization results on the NOCS-REAL275 dataset. We compare our method with the representative baseline (SGPA [1]).
Left: The corresponding language caption generated from our method. Right: 6-DoF pose tracking and reconstructed shape visualization,
that are presented in RGB image for clearer comparison. Yellow and green represent the results from SGPA, ours and ground-truth label.

A.3. Limitation and Open Problems

While our L4D-Track framework effectively handles
zero-shot 6-DoF tracking and 3D shape reconstructing by
incorporating the language semantics and pairwise implict
representation, it still faces limitations in certain aspects.
The key limitation is related to the available ground-
truth labels for point cloud-language data pairs. Although
our proposed association method provides the accurate
description of the infromation in 3D point cloud, the
performance of our method is still limited. We believe
that pre-training our network on a large dataset with rich
3D-language semantic information will be a promising

alternative, which will be explored in our future works.
Additionally, the model tends to generate the non-perfect
shapes based on the current observation. This motivates
us to explore shape completion module in the following
research.

B. Additional Results
B.1. Extra Qualitative Results

Tab. 1 summarizes the detailed per-category results
of our approach for object pose tracking on the NOCS-
REAL275 dataset. We also show more detailed quantitative
comparisons of 3D shape reconstruction on YCB-Video as
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"A video contains several  
instances with different 

classes on the table."

"The scene shows a table 
with , a bowl and can. 
There is also a can of 

spam and a box ."

"There are a table with a red 
bowl, a can of sardines, a 
can of meat and a box of 

candy."

object-level caption:

scene-level caption:

video-level caption:

TimeTimeSnapshot

Figure 3. Visualization results of 6-DoF pose tracking on the YCB-Video dataset. We compare our method with the representative baseline
(DenseFusion [6]), and the corresponding language captions are generated from our method (left side). To keep in line with DenseFusion,
we also project each object shape model to 2D image frame using different colors.

Table 1. Per-category results of our proposed method on the
NOCS-REAL275 dataset under different evaluation metrics.

Category IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Bottle 88.3 85.2 76.4 50.9 52.3 68.5 84.7
Bowl 89.2 86.0 76.2 54.7 55.2 66.8 86.9
Camera 83.6 80.1 77.9 43.1 55.7 67.4 88.4
Can 87.5 84.0 75.6 47.3 58.6 70.2 85.0
Laptop 81.6 80.0 74.2 42.4 58.9 70.1 83.8
Mug 88.2 85.1 75.7 47.8 56.5 69.0 84.2
Average 86.6 83.4 76.0 47.7 56.2 68.7 85.5

Table 2. Quantitative comparison of 3D shape reconstruction on
the pubilc YCB-Video dataset: Evaluated with CD (10−2).

Object
SGPA

[1]
SPD
[5]

CenterSnap
[2]

Ours
w/o seg.

Ours

002 master chef can 0.16 0.15 0.18 0.16 0.14
003 cracker box 0.23 0.16 0.17 0.18 0.16
006 mustard bottle 0.31 0.55 0.14 0.21 0.20
024 bowl 0.10 0.13 0.13 0.11 0.09
025 mug 0.14 0.12 0.07 0.14 0.11

Average 0.19 0.22 0.14 0.16 0.14

depicted in Tab. 2. We compare with three representative
baselines including SGPA [1], SPD [5], CenterSnap [2]
and we selected five categories including ”002 master chef
can”, ”003 cracker box”, ”006 mustard bottle”, ”024 bowl”,
”025 mug”. As one can easily deduce in Tab. 2, we obtain
average CD metrics of 0.16 and 0.14 using our complete
model and its variant, respectively, and we outperforms the

Table 3. Ablation analysis on the robustness to tracking pose
errors. Init. ×m means adding m times train-time errors in
pose initialization. All ×m means adding m times errors to all
estimated poses in every previous frames.

Dataset Metric Orig. Init.× 1 Init.× 2 All× 1 All× 2

NOCS-REAL275

5◦5cm ↑ 56.2 55.2 53.9 55.0 53.3
IoU25 ↑ 86.6 85.0 83.8 85.7 82.1
Rerr ↓ 5.6 6.6 7.4 5.8 6.8
Terr ↓ 3.3 5.2 6.3 4.0 5.5

YCB-Video
ADD ↑ 80.4 74.1 73.3 75.0 74.2
ADD-S ↑ 86.1 83.0 82.4 84.3 82.2

Table 4. Ablation analysis on influence of different configurations
for inter-frame embeddings. ”non-2D features” means our model
without adding image features and ”Fusion” indicates cross-
attention based cross-coupled fusion module. ”Caption” means
the language caption embeddings.

Dataset Metric
Inter-Frame Embeddings (ft−1/ft)

Orig.
non-2D
features

w/o
Fusion

w/o
Caption (fc)

NOCS-REAL275

5◦5cm ↑ 56.2 55.4 55.0 50.9
IoU25 ↑ 86.6 84.5 82.2 81.7
Rerr ↓ 5.6 7.8 6.3 9.2
Terr ↓ 3.3 4.3 5.0 6.8
CD ↓ 0.08 0.14 0.10 0.16

YCB-Video
ADD ↑ 80.4 73.9 75.0 68.1
ADD-S ↑ 86.1 80.1 84.3 77.2
CD ↓ 0.14 0.18 0.14 0.20

state-of-the-arts also indicates the superiority for zero-shot
shape reconstruction.



Table 5. Ablation analysis on the effect of the number of pose
hypothesis matrices. The original seting (Orig.) is 5× 104.

Dataset Metric Orig. 1× 105 2× 104 5× 103 2× 103

NOCS-REAL275

5◦5cm ↑ 56.2 54.3 53.7 35.4 42.1
IoU25 ↑ 86.6 84.0 85.2 65.7 58.9
Rerr ↓ 5.6 5.8 6.9 14.8 16.9
Terr ↓ 3.3 4.0 5.6 20.3 27.3

YCB-Video
ADD ↑ 80.4 79.3 75.1 66.1 58.1
ADD-S ↑ 86.1 85.8 79.8 68.4 60.2

B.2. Extra Ablation Analyses

Robustness to pose noises. Due to our method needs
to be based on the pose from the previous frame or initial
pose, we further ablate the robustness of our method against
different noise pose inputs on pose accuracy. As described
in Tab. 3, we gradually increase the initial pose error
from one to two time to examine the robustness to pose
initialization, meanwhile, we add one or two times pose
error to every previous frames to examine the robustness
to tracking pose errors. It can be seen that our method is
robust to the noise of the previous or initial poses.

Influence of inter-frame embeddings. To investigate
the influence of different configurations of the inter-frame
embeddings in our framework, we conduct experiments
using three variations of our model: without 2D image
features, i.e., non 2D features, our model without cross-
coupled fusion and our model without adding languange
caption embeddings during testing. As shown in Tab. 4,
the results demonstrate that the caption embeddings fc and
our proposed cross-coupled fusion module can possess the
stronger pairwise representation ability.

Effect of pose hypothesis matrices. In L4D-Track, we
use the Assumption to estimate the change in pose to obtain
the optimal pose results. So, we also investigate the effect
of different choices of the number of hypothesis matrices
on pose accuracy. we gradually reduce the number from
1×105 to 2×103. Tab. 5 concludes the comparative results
on botn two public datasets. It shows that the pose result
is relatively stable to the original choice and the smaller the
number, the greater the impact on pose accuracy when the
number is less than 2× 104.

B.3. Additional Visualizations

We provide extra qualitative visualization results of 6-
DoF pose tracking and 3D shape reconstructing on NOCS-
REAL275 dataset, as depicted in Fig. 2. Compared to the
SGPA baseline that adjusts the prior feature by injecting
instance information into the prior feature, our approach can
estimate more accurate pose and generate more complete
shape with the help of the language captions. It reflects the
strong generalized estimation ability of our method.

We also visualize some comparative results made by

DenseFusion [6] with iterative refinement (two iterations)
and our model. As seen in Fig. 3, the baseline fails to
tracking the pose of the bowl and the tuna fish can, whereas
our approach remains more robust performance. It also
indicates that our method performs well even when the
targeted objects are heavily occluded.
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