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Overview
In Sec. 1, we first provide detailed proves regarding the
properties of the standardized logit by the proposed Z-
score function. We then elaborate the implementation of
our proposed method on CTKD, DKD and MLKD in detail
in Sec. 2. Finally, we show more experimental results and
analyses in Sec. 3.

1. Proof
In this section, we prove three properties of Z(zn; τ) men-
tioned in Section 4.3 of the manuscript, i.e., zero mean, fi-
nite standard deviation, and boundedness. Its forth property
of monotonicity is trivial by considering the fact that Z-
score function is a kind of linear transformation function.

1.1. Proof of Zero Mean Porperty

We want to prove the “Zero mean” property of Z(zn; τ) in
Section 4.3 of the manuscript, i.e.,
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1.2. Proof of Finite Standard Deviation

We mention the “finite standard deviation” property of stan-
dardized logit in Section 4.3 of the manuscript. Here, we

want to prove Z(zn; τ) has the standard deviation 1
τ , i.e.,
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1.3. Proof of Boundedness

We want to prove that the logit after the weighted Z-score
Z(zn; τ) in Section 4.3 of the manuscript is bounded within
[−
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Table 1. The Top-1 Accuracy (%) of different knowledge dis-
tillation methods on the validation set of CIFAR-100 [10]. The
teacher and student have distinct architectures. The KD methods
are sorted by the types, i.e., feature-based and logit-based. We ap-
ply our logit standardization to the existing logit-based methods
and use ∆ to show its performance gain. The values in blue de-
note slight enhancement and those in red non-trivial enhancement
no less than 0.15. The best and second best results are in bold and
underlined respectively.

Type
Teacher ResNet32×4 ResNet32×4 WRN-40-2

79.42 79.42 75.61

Student SHN-V1 VGG8 SHN-V1
70.50 70.36 70.50

Feature

FitNet [16] 73.59 72.91 73.73
AT [22] 71.73 72.74 73.32
RKD [15] 72.28 72.84 74.21
CRD [20] 75.11 73.54 76.05
OFD [6] 75.98 73.85 75.85
ReviewKD [2] 77.45 74.35 77.14
SimKD [1] 77.18 75.76 75.65
CAT-KD [4] 78.26 75.92 77.35

Logit

KD [7] 74.07 72.73 74.83
KD+Ours 74.44 73.23 75.64
∆ 0.37 0.50 0.81

KD+CTKD [13] 74.71 72.47 75.64
KD+CTKD+Ours 74.85 73.51 76.32
∆ 0.14 1.04 0.68

DKD [25] 76.45 74.48 76.70
DKD+Ours 76.77 74.61 76.95
∆ 0.32 0.13 0.25

MLKD [9] 77.18 74.58 77.44
MLKD+Ours 78.15 75.98 78.28
∆ 0.97 1.40 0.84
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The same proof holds for vn and thus we omit it.

2. Implementation Details
We follow the same experimental settings as previous
works [2, 9, 25].

For the experiments on CIFAR-100, the optimizer
is SGD [19] and the epoch number is 240, except for
MLKD [9] of 480. The batch size is 64. The learning
rate is set initially 0.01 for MobileNets[8, 17] and Shuf-
fleNets [24] and 0.05 for other architectures consisting of
ResNets [5], WRNs [21] and VGGs [18]. The learning rate
shrinks by a decay rate of 0.1 at 150-th, 180th and 210th
epochs. The momentum and weight decay are respectively

0.9 and 5e − 4. The weight of CE loss is unchanged from
its original value (0.1 for KD [7] and CTKD [13], 1.0 for
DKD [25] and MLKD [9]). We choose the base tempera-
ture τ = 2 and the weight of KD loss λKD = 9 by default
according to the ablation studies. For the experiments of
DKD [25], the weight of KD loss is set to 12.

For the settings on ImageNet, SGD solver is used and
the total epoch number is 100. The batch size is 512. The
learning rate is set to 0.2 and divided by 10 at 30th, 60th,
90th epochs. The momentum and weight decay are respec-
tively 0.9 and 1e − 4. The weight of CE loss is unchanged
from its original value (0.1 for KD [7] and CTKD [13], 0.5
for DKD [25] and MLKD [9]). We choose the base temper-
ature τ = 2 and the weight of KD loss λKD = 9 by default.
For the experiments of DKD [25], the weight of KD loss is
set to 12.

2.1. Implement ours on CTKD, DKD and MLKD

CTKD [13] is a method of choosing adaptive sample-wise
temperature by adversarial learning. Therefore, we com-
bine ours with CTKD [13] by using CTKD to choose the
base temperature τ . The weight of KL loss is set to 9 for all
experiments of CTKD [13]+Ours.
DKD [25] is a KD method of decoupling KL diver-
gence into two terms, i.e., target class knowledge distilla-
tion (TCKD) and non-target class knowledge distillation
(NCKD). Considering the fact that it is a variant of KL
divergence, we just apply our pre-process directly. The
weight of DKD loss is set to 12 for all experiments of
DKD [13]+Ours.
MLKD [9] is a logit-based KD method that regulates the
alignment not only at the instance level but also at batch
and class levels. Therefore, the approach leverages the
softmax function involving temperatures at three levels.
We thus apply our pre-process in the softmax of the lev-
els. The weight of MLKD loss is set to 9 for all experiments
of MLKD [9]+Ours.

3. More Analysis

3.1. More experiments on CIFAR-100

We conduct several more experiments on CIFAR-100 where
the teacher and student have different architectures. Due
to the page limit, we put the results in the supplementary
materials, which are shown in Tab. 1. As implied, our pre-
process benefits all the logit-based KD methods. For the
experiments of other baselines like ReviewKD [2], CAT-
KD [4], etc., we use their original codes and default con-
figurations to run experiments for any missing setting. The
additional experiments further validate the advantage of our
method for boosting the existing logit-based KD methods.



Table 2. The ablation studies under different settings in Z-score.
The base temperature τ is set to be 1. By default λCE = 0.1.
The logit vector of teacher vn and student zn are abbreviated as
z for succinctness. The teacher and student are ResNet32×4 and
ResNet8×4.

λKD z (KD) z− z z
σ(z)

(z−z)
σ(z)

(Ours)

0.9 73.09 72.60 74.81 74.96
3.0 73.79 73.65 75.89 75.85
6.0 73.91 73.87 75.97 76.31
9.0 73.67 73.97 75.61 76.23
12.0 73.60 74.00 75.89 76.11
15.0 73.19 73.20 75.72 75.91
18.0 72.48 72.95 75.65 75.72

3.2. More Ablation Studies

We conduct more ablation studies for the extra cases of base
temperatures τ = 1 and τ = 4. The results are shown in
Tab. 2 and Tab. 3 respectively. We can find that for any
base temperature increasing the weight of KD loss does not
enhance the performance of vanilla KD. However, a rela-
tively large weight of KD loss for our pre-process yields a
significant performance gain (such as λKD = 6, 9, 12, 15).
Besides, the proposed pre-process is not very sensitive to
the base temperature and the weight of KD loss. A rel-
atively large range of their values constantly leads to a
satisfactory result. For example, when τ = 1, 2, 4 and
λKD = 6, 9, 12, 15, almost all the accuracy values exceed
76%. Therefore, we choose τ = 2 and λKD = 9 by default.

ATKD [3] has a similar idea regarding standard deviation
with our Z-score. As shown in the tables, our results are
consistently better than z

σ(z) . Besides, their derivation in-
volves an approximation of Taylor expansion, while ours is
more mathematically accurate. They also assume the mean
of logits equal to zero. In contrast, as shown in the bivari-
ate histograms, the logits are always numerically divergent
from zero. Such an assumption may reduce its accuracy.

Note that different from existing works, our pre-process
is not an individual KD method. Instead, our work is like
CTKD [13] and can serve as an assistant for all logit-based
KD involving temperature. So we apply our pre-process
to three existing KD methods and help them get better and
many of their results exceed SOTA performance.

Regarding the reason on the necessity of the relatively
large weight λKD for our pre-process, we give the deriva-
tion of the gradient of loss with respect to z

(k)
n and try to

answer it from a perspective of gradient compensation.

We know the expression of KD loss is given by

LKD = LKL (q(v)||q(z)) =
K∑
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q(v)(k) log
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q(v)(k)

q(z)(k)

)
.

Table 3. The ablation studies under different settings in Z-score.
The base temperature τ is set to be 4. By default λCE = 0.1.
The logit vector of teacher vn and student zn are abbreviated as
z for succinctness. The teacher and student are ResNet32×4 and
ResNet8×4.

λKD z (KD) z− z z
σ(z)

(z−z)
σ(z)

(Ours)

0.9 73.76 73.61 73.03 73.83
3.0 74.07 74.09 74.15 74.33
6.0 74.14 73.93 76.11 76.40
9.0 74.19 74.24 76.17 76.54
12.0 73.96 73.97 76.12 76.39
15.0 73.08 73.85 76.14 76.38
18.0 69.98 70.84 76.18 76.43

(a) Vanilla CTKD
Mean: 0.37, Max: 3.19.

(b) Ours w/o Z-score
Mean: 0.94, Max: 7.39.

(c) Ours w/ Z-score
Mean: 0.09, Max:0.60.

(d) Vanilla DKD
Mean: 0.13, Max: 0.99.

(e) Ours w/o Z-score
Mean: 0.54, Max: 4.35.

(f) Ours w/ Z-score
Mean: 0.08, Max:0.38.

(g) Vanilla MLKD
Mean: 0.23, Max: 2.75.

(h) Ours w/o Z-score
Mean: 0.18, Max: 1.91.

(i) Ours w/ Z-score
Mean: 0.06, Max:0.44.

Figure 1. The heatmaps of the average logit difference between
the teacher and student. The 1st Row is for CTKD, 2nd Row
is for DKD and 3rd Row is for MLKD. Our pre-process indeed
enables the student to generate the logits of divergent range from
the teacher as shown in 1b, 1e&1h, while its standardized logits
(1c, 1f&1i) are more closer to the teacher’s than vanilla CTKD
(1a), DKD (1d) and MLKD (1g).
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lowing intermediate step, i.e.,
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Besides the factor of the base temperature τ , considering

the decline of gradient due to the 1
σ(zn)2

where σ(zn) is
usually greater than 1, we consider increasing the weight of
KD loss manually to compensate the gradient decline. We
also tried to make the weight of KD loss exactly σ(zn)

2.
However, gradients turn to be unstable.

3.3. More visualizations

We show more visualizations of CTKD [13], DKD [25] and
MLKD [9] regarding logit difference in Fig. 1 and logit bi-
variate histogram in Fig. 2. In the visualization section, the
teacher and student for all experiments are ResNet32×4 and
ResNet8×4.

The results are similar to the cases of KD [7]. One note-
worthy observation is that in Fig. 2b and 2c the students
distilled by vanilla DKD [25] and MLKD [9] have already
generated the logits diverging from those of the teacher.
Considering DKD [25] and MLKD [9] perform much bet-
ter than KD [7] and CTKD [13], a strict constraint of logit
mimicking may indeed impedes the performance of stu-
dents. Namely, a distribution of the student logits differing
from the teacher can yield better accuracy. Compared to
vanilla DKD [25] and MLKD [9], our pre-process achieves
better results and, at the same time, enables a perfect match
between standardized teacher and student logits.

c

(a) Teacher and student distilled by CTKD only and CTKD with ours

(b) Teacher and student distilled by DKD only and DKD with ours

(c) Teacher and student distilled by MLKD only and MLKD with ours

Figure 2. The bivariate histogram of logit mean and logit standard
deviation for multiple models on CIFAR-100.

3.4. More experiments on distilling ViT

Distilling ViT using our method is feasible as our work is
model-agnostic, and experiments are conducted on CIFAR-
100 following the same setting as [11, 12]. The results are
presented in Tab. 4. Notably, our method consistently and
significantly improves KD for all ViTs. We only attempt
KD+Ours with default λKD and τ but still achieve com-
parable results against AutoKD [12]. It outperforms Au-
toKD [12] considerably, especially when the student is hi-
erarchical and relatively large (78.43 vs 77.48). These find-
ings show its efficiency in mitigating ViTs’ data-hungry is-
sue. Fig. 3 plots two validation logs during training, show-
ing that ours consistently transfers rich latent knowledge,
helping KD surpass LG [11] after the 120-th epoch.

3.5. Experiments with More baselines

More comparisons against TAKD [14], ATKD [3], and
PT-Loss [23] are presented in Tab. 5. Since the code is
unavailable, we implement PT-Loss ourselves. Though
TAKD could alleviate teacher-student gap, TA-student or
teacher-TA gap may exist and hinder its final performance.
ATKD and PT-Loss yield comparable performances against
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Figure 3. Left: Accuracy & loss of RN32×4-RN8×4. Right:
Top-1 validation accuracy on CIFAR-100 for PiT-Ti & PVT-Ti.

Table 4. The Top-1 Acc. (%) of KD methods on CIFAR-100.
Teacher is ResNet56. Hie. indicates if model is hierarchy struc-
ture. No logs and codes for Auto-KD are available yet. The values
from column names without † are reported by [11, 12].

Student Hie. Size Train AT LG[1] AutoKD[5] KD KD+Ours†

DeiT-Ti ✗ 5M 65.08 73.51 78.15 78.58 73.25 78.55+5.30
T2T-ViT7 ✗ 4M 69.37 74.01 78.35 78.62 74.15 78.43+4.28
PiT-Ti ✔ 5M 73.58 76.03 78.48 78.51 75.47 78.76+3.29
PVT-Ti ✔ 13M 69.22 74.66 77.07 77.48 73.60 78.43+4.83

Table 5. Results of various teachers on CIFAR-100. Student is
W-16-2. We set TA in TAKD as the student in the left previous
column. The values of row names without † are from our paper.

Teacher VGG13 W-28-2 W-40-2 W-16-4 W-28-4 RN50
74.64 75.45 75.61 77.51 78.60 79.34

TAKD†
TA 74.9774.8 75.5475.9 75.0277.0 75.9276.5 75.2778.0 75.3580.1

ATKD† 75.01 76.14 75.89 76.32 75.61 76.10
PT-Loss† 75.03 76.31 76.12 76.47 75.58 76.12

KD+Ours 75.03+0.176.32+1.076.11+1.276.72+0.975.77+0.776.24+0.9
DKD+Ours75.56+0.176.39+0.576.39+0.276.68+0.776.67+0.276.82+0.2

KD+Ours but could not outperform DKD+Ours.

3.6. Experiments on Additional Datasets

We also conduct experiments on two additional datasets
e.g., COCO and CUB.
For COCO, we adhere to the exact settings of ReviewKD
and DKD and present results in Tab. 6. Our method is able
to improve the performance of the object detector consis-
tently.
For CUB, we choose ResNet34 as teacher and train it in two
ways. The first is to train from scratch, and the second is
to fine-tune the model pre-trained on ImageNet. We select
two distillation methods, KD and DKD, to distill students.
The patch size is 448. The learning rate is 0.2, the same
as distilling RN18 on ImageNet. Other settings follow the
settings as Tab. 5 on CIFAR-100. The results are in Tab. 7.
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