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Figure 1. The illustration of projection ray in y − z plane under
the medium refraction rate distribution n(z).

1. Detailed Derivation of Mirage Projection
As is illustrated in Figure 1, during the projection to x − z
plane, the distorted projection ray under heterogeneous dis-
tribution of medium is parallel to y−z plane, thus the curve
of ray can be formulated in y − z coordinates. The typical
medium refraction rate distribution n(z) where mirage phe-
nomenon occurs over sea [2, 3] can be formulated as:

n(z) = 1 + ρ0e
−kz, (1)

which is only related to height z and has been introduced
in Section 3.1 of main text. ρ0 and k are constant coeffi-
cients which indicate the degree of change in refraction rate
along z axis. According to optical principles, the angle of
refraction (i.e., θ in Figure 1) follows Snell’s Law:

n(z) sin θ = C, (2)

where C is a constant number, and θ is the angle between
the orientation of ray and the vertical z axis, respectively.
Since θ is an acute angle, (2) can be further formulated as:

tan θ =
sin θ√

1− sin2 θ

=
C/n(z)√

1− C2/n2(z)

=
C√

n2(z)− C2

=
C√

(1 + ρ0e−kz)2 − C2
.

(3)

Meanwhile, the angle θ can be further represented as:

tan θ =
dy

dz
, (4)

where dy and dz denote the differential of y and z, respec-
tively. Combining (3) and (4), we can derive:

dz

dy
=

1

tan θ

=

√
(1 + ρ0e−kz)2 − C2

C2

=

√
(1 + ρ0e−kz)2

C2
− 1.

(5)

It is worth notice that (5) is not a standard differential equa-
tion of the curve since the signs of dz and dy in Figure 1
should be different. Moreover, we set ẑ = z − zmax, ẑ ≤ 0
where zmax is the boundary height of the ray to share the
approximation of exponential function. Given the bound-
ary condition where the projection ray far from ground (i.e.,
ẑ = 0) is parallel to the ground (i.e., x − y plane), we can
further formulate constant C as:

C = n(0) sin(π/2) = 1 + ρ0. (6)

Therefore, we can formulate the differential equation of ẑ
as:

dẑ

dy
= −

√
(1 + ρ0e−kẑ)2

(1 + ρ0)2
− 1. (7)

The exact solution to (7) is a transcendental function, which
is impractical for implementation. Therefore, we retain the
second-order approximation concerning ρ0 and k to sim-
plify the expression since ρ0, k are relatively small in real
world:

(1 + ρ0e
−kẑ)2 ≈ (1 + ρ0 − ρ0kẑ)

2

≈ (1 + ρ0)
2 − 2(1 + ρ0)ρ0kẑ

≈ (1 + ρ0)
2 − 2ρ0kẑ.

(8)

Based on the approximation, (7) can be further formulated
as:

dẑ

dy
= −

√
(1 + ρ0)2 − 2ρ0kẑ

(1 + ρ0)2
− 1

= −

√
−2ρ0kẑ

(1 + ρ0)2

= −

√
2ρ0k

(1 + ρ0)2
(−ẑ)

1
2 .

(9)

It is clear that the analytical solution to (9) corresponds to a
parabola. Considering the boundary condition where ẑ = 0
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Figure 2. Different choices of projection planes. Both two choices
set the center of the bounding box of input point cloud as the center
of projection planes. (A) includes 4 view planes, i.e. front view,
back view, left view and right view, while (B) includes 2 more
views from top and bottom.

is attained at y = 0, we have:

ẑ = − ρ0k

2(1 + ρ0)2
y2, (10)

Therefore, assuming the boundary height where the ray
meets view plane is z0 (i.e., z0 in Figure 1), the equation
can be further expressed as:

z = z0 −
ρ0k

2(1 + ρ0)2
y2. (11)

which shares the same representation with our final imple-
mentation in mirage projection.

2. More Implementation Details
In this section, we further provide more implementation de-
tails for data processing and data augmentations in train-
ing/testing process.

Data preprocessing. We follow the conventional practise
in [7, 8] to preprocess two datasets. For S3DIS [1], we use
the aligned version. Since the training set is relatively small,
we follow [8, 9] to enlarge the size by repeating 30× to
obtain 6,120 scenes. For ScanNet V2 [4], we also repeat 9×
training set to get 10,809 training samples. We also collect
the normal vector of each point.

Data augmentation in training/testing process. During
training process, we adopt same data augmentation strate-
gies with [8], including random dropout, random flip, ran-
dom scale, random jittering. During training process, we
use sphere crop over the entire scene and constrain the max-
imum number of input points to 100,000 after group mirage
projection. We normalization the projection image with the
same strategy in 2D image processing [5]. It is worth notice
that our method does not require Mix3D [6] strategy which

Table 1. The comparison of different choices of projection planes
in Figure 2 on S3DIS Area 5.

Choice of Projection Planes nv mIoU (%)

(A) 4 72.0
(B) 6 71.3

Table 2. The comparison of fair data augmentation between PTv2
and our method on S3DIS Area 5.

Method Mix3D Aug
Max points mIoU
per sample (%)

PTv2 [8] ! 30k 71.6
% 10k 71.0

MirageRoom % 10k 72.0

is applied in PTv2 [8]. During testing process, we use a
test-time voting strategy which is the same with previous
works.

3. More Ablation Studies and Analyses
In this section, we further conduct ablation studies to verify
the effectiveness of our experimental designs, including the
choices of projection planes and the comparison under fair
data augmentation.

Choices of projection planes. As is mentioned in Sec-
tion 3.3 and 4.1 of main text, we use 4 projection planes
to generate multi-view projection images for each κ, which
is illustrated in Figure 2 (A). Specifically, we first set the
center of the bounding box of input point cloud as the cen-
ter of projection planes, then we choose 4 planes where
the normal directions are front, back, left and right, respec-
tively. We further add 2 more projection planes whose nor-
mal directions are top and bottom, which is illustrated in
Figure 2 (B). In this way, the number of projection planes
nv = 6. The inference results of (A) and (B) on S3DIS
area 5 are illustrated in Table 1. It is clear that the perfor-
mance is better under (A), and two major reasons leads to
the drop under (B): 1) Different distributions of objects be-
tween top/bottom views and other views, which makes the
FPN network hard to generate unified feature representa-
tions. 2) Mirage projection is not suitable for top/bottom
views due to the physical modeling.

Fair data augmentation. For a fairer comparison to eval-
uate the effectiveness of our method, we further train
PTv2 [8] without Mix3D [6] data augmentation, which
shares same augmentations with our method. The results
are shown in Table 2. Apparently, the Mix3D strategy pro-
vides more points in one batch, and our method exhibits a
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Figure 3. Visualization results of our method compared with the
same network architecture without group mirage projection but
only straight-line projection. Best viewed in color.

more significant advantage over PTv2 under same data aug-
mentation settings.

4. More Visualization Results

We visualize the detail results of our method compared with
the same network architecture without group mirage projec-
tion but only straight-line projection, and the visualization
results are shown in Figure 3. It is clear that our mirage
projection can provide more accurate details even though it
is occluded by straight-line projection. However, the exper-
iment without group mirage projection makes mistakes.

More visualizations comparisons on S3DIS [1] and
ScanNet V2 [4] between PTv2 [8] and our method are il-
lustrated in Figure 4 and Figure 5, respectively. Compared
with PTv2 [8], our method provides more accurate predic-
tions especially over regions without clear geometric and
structural features. For example, in the first 2 rows of Fig-
ure 4, PTv2 fails to predict murals on the wall, which shares
similar geometric structures with wall. Thanks to the guid-
ance from 2D projection, our method is able to obtain cor-
rect inferences for these parts.
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Figure 4. Visualization results of semantic segmentation results of PTv2 [8] and MirageRoom on S3DIS [1] dataset. Best viewed in color.
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Figure 5. Visualization results of semantic segmentation results of PTv2 [8] and MirageRoom on ScanNet V2 [4] dataset. Best viewed in
color.
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