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Supplementary Material

1. More Details of MoAdapters
Given the output of certain main pipeline block at the l-
th layer as Hl ∈ Rds×dt , with ds and dt the dimensions
of pipeline intermediate spatial and temporal feature. For
FC-MoAdapters, the dimensions of the two FC layers com-
pile with the temporal dimension of Hl, expressed as Wl

1 ∈
Rdt×dt and Wl

2 ∈ Rdt×dt . For GC-MoAdapters, we set
the dimension of trainable weights Wl

gc in GraphConv(·)
to dt × dt

′, where dt′ = 256 is applied to all three base-
lines. Then the following FC layer (i.e., Wl

3) maps it into
the backbone temporal dimension dt.

Specially, for Fast-MoML, as the last layer (the L-th
layer) of the original pipeline outputs HL ∈ Rdta

s ×d
ta
t with

small target dimension, directly attaching our motion em-
bedding WL behind it may not be sufficient to express the
adaptive information. In this case, we modify the original
last layer to let it output HL ∈ Rdta

s ×dt , and then use our
WL to map it into the final dimension dtas × dtat .

The blocks of the three baselines are stacked as follows.
LTD [7] contains 12 blocks of graph convolutional layers
with residual connections, plus two individual graph con-
volutional layers (one at the beginning and one at the end).
MotionMixer [1] contains 3 blocks of spatio-temporal mix-
ing layers, plus two individual fully-connected layers (one
at the beginning and one at the end). SPGSN [6] contains 10
blocks of graph scattering layers, with each one followed by
an MLP structure. In accordance with them, we apply 12, 3
and 10 MoAdapters for each baselines, respectively.

2. Details of Loss Function
In the Eq (4) and Eq (5) of our main paper, we use
1
T

∑T
t=1 ‖ŷs,t − ys,t‖22 to depict the prediction loss of the

s-th sub-task, with ŷs,t and ys,t indicating the t-th predicted
and real frame. This is only a general expression, and here
we present the concrete function for each baseline.

For MoML on LTD [7] and SPGSN [6], we follow the
two baselines to predict both the observed part (N frames)
and target part (T frames), and formulate the loss as:

L(LTD/SPGSN) =
1

N + T

T∑
t=−N

‖ŷs,t − ys,t‖22. (1)

As the two baselines use Discrete Cosine Transformation
(DCT) to process motion data to extract temporal informa-
tion, they calculate the loss over the (N +T ) horizon rather
than T , which can bring additional signal to learn to predict
DCT coefficients that represent the entire sequence. We also
adopt the same strategy in line with them.

For MoML on MotionMixer [1], we follow the baseline
to use the joint position displacement ∆ between two adja-
cent frames (i.e., velocity), rather than the joint position of
each frame, with the loss formulated as

L(MotionMixer) =
1

T

T∑
t=1

‖∆ŷs,t −∆ys,t‖22. (2)

3. More Implementation Details
To train baselines with MoML, we set the batch size to 16,
50, and 16 for LTD [7], MotionMixer [1] and SPGSN [6].
The adaptive operation is conducted via 5 gradient steps by
FC/GC MoAdapters. We provide comparisons on different
gradient step number u in Figure 1 to further analyze the
effects brought by its changes. During meta-training, the
inner learning rate α = 0.01 is for all methods. The outer
learning rate β is initialized as 0.0005, 0.01 and 0.001 in
align with the three baselines. For LTD and SPGSN, a 0.96
decay is performed every two epochs; for MotionMixer, the
learning rate is decayed by a factor of 0.1 every 10 epochs.
Fast-MoML shares the same β as the above, and no α is
needed due to the closed-form solution.
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Figure 1. Comparisons on different numbers u of gradient up-
dates on Human3.6M. Left, middle and right sub-figures show the
online adaptive prediction performance modified from LTD, Mo-
tionMixer and SPGSN, respectively. Blue dashed lines indicate
offline-trained performance of these baselines. Generally, u = 5
can help produce the lowest MPJPE errors in most cases, while the
larger u would not necessarily bring more benefits.

For the ablations on vanilla MAML in our main paper
Sec 4.4, the outer learning rate β is the same as MoML,
but a lower inner learning rate α = 0.005 is adopted to
stabilize the training process. For the ablation on gradient-
based Fast-MoML, α and β are same as in standard MoML.

4. More Experiments
4.1. Full Results on CMU-Mocap

We provide MPJPE errors of all actions in CMU-Mocap in
Table 1. From the table, our MoML can effectively bring



Basketball Basketball Signal Directing Traffic Jumping
millisecond (ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res. sup [8] 15.5 26.9 43.5 49.2 20.2 33.0 42.8 44.7 20.5 40.6 75.4 90.4 26.9 48.1 93.5 108.9
DMGNN [5] 15.6 28.7 59.0 73.1 5.0 9.3 20.2 26.2 10.2 20.9 41.6 52.3 32.0 54.3 96.7 119.9
MSR [2] 10.3 18.9 37.7 47.0 3.0 5.7 12.4 16.3 5.9 12.1 28.4 38.0 15.0 28.7 55.9 69.1
LTD [7] 11.7 21.3 41.0 50.8 3.3 6.3 13.6 18.0 6.9 13.7 30.3 40.0 17.2 32.4 60.1 72.6
LTD-FC 11.3 20.1 39.9 48.6 3.2 5.5 13.8 17.7 6.3 12.6 28.1 37.8 16.7 31.2 58.5 69.5
LTD-GC 11.1 19.8 39.5 48.3 3.2 5.3 13.8 17.5 6.1 12.0 27.9 37.3 16.3 30.8 58.2 69.0
SPGSN [6] 10.2 18.5 38.2 48.7 2.9 5.3 11.3 15.0 5.5 11.2 25.5 37.1 14.9 28.2 56.7 71.2
SPGSN-FC 9.8 17.6 35.4 46.3 3.3 5.8 12.6 14.7 5.3 10.4 23.1 35.3 14.1 26.2 53.5 66.9
SPGSN-GC 9.7 17.7 35.8 46.6 3.5 5.5 13.9 14.5 5.1 10.8 23.2 35.5 13.6 26.5 54.0 67.0

Running Soccer Walking Washwindow
millisecond (ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res. sup [8] 25.8 48.9 88.2 100.8 17.8 31.3 52.6 61.4 44.4 76.7 126.8 151.4 22.8 44.7 56.8 104.7
DMGNN [5] 17.4 26.8 38.3 40.1 14.9 25.3 52.2 65.4 9.6 15.5 26.0 30.4 7.9 14.7 33.3 44.2
MSR [2] 12.8 20.4 30.6 34.4 10.9 19.5 37.1 46.4 6.3 10.3 17.6 21.1 5.5 11.1 25.1 32.5
LTD [7] 14.5 24.2 37.4 41.1 13.3 24.0 43.8 53.2 6.6 10.7 17.4 20.4 6.0 11.6 24.8 31.6
LTD-FC 14.6 23.3 36.6 39.7 12.7 22.8 42.1 48.4 6.1 9.6 16.8 19.6 5.6 10.4 23.0 27.9
LTD-GC 14.8 23.1 35.9 38.4 12.4 21.9 41.7 47.8 6.0 9.2 16.2 19.7 5.4 10.3 22.6 27.5
SPGSN [6] 10.8 16.7 26.1 30.1 10.9 19.0 35.1 45.2 6.3 10.2 16.3 20.2 4.9 9.4 21.5 28.4
SPGSN-FC 10.0 14.5 24.4 27.8 10.5 17.0 33.7 44.3 6.0 9.0 14.6 18.1 4.8 8.8 19.6 27.5
SPGSN-GC 9.9 14.6 24.2 29.0 10.4 17.3 33.4 44.0 5.7 9.3 14.8 17.4 4.5 9.1 19.8 27.3

Table 1. Comparisons of MPJPE errors on CMU-Mocap between baselines without/with our MoML approach.

walking eating smoking discussion
LTD MotMix SPGSN LTD MotMix SPGSN LTD MotMix SPGSN LTD MotMix SPGSN

baseline 48.08 44.36 43.97 42.8 38.21 39.87 40.04 39.81 37.54 73.59 65.93 69.23
FC 45.87 42.22 42.44 41.21 37.52 38.96 38.96 37.76 36.25 71.84 64.54 68.68
GC 45.45 43.38 42.01 41.01 38.39 38.75 38.89 37.99 36.94 71.65 65.74 66.81

Table 2. Performance on unseen categories between baselines without/with our MoML approach. MotMix is short for MotionMixer.

baselines into online adaptive setting and yield improved
performance in most cases.

4.2. MoML for Unseen Categories

Inspired by [4] that involves few-shot learning paradigm
to predict human motions of unseen motion categories, we
also analyze the compatibility of MoML in this scenario.
Following [4], we exclude 4 classes of Human3.6M (walk-
ing, eating, smoking and discussion) from meta-training
datasetMtr, and only train MoML with the remaining 11
classes. Motions from these 4 categories are regarded as un-
seen and used to evaluate the adaptability of our approach
during meta-testing. Specifically, we draw multiple consec-
utive sub-tasks from certain novel category as novel stream-
ing data, and adapt θ to suit each temporary novel context
along the time. Note that, for fair comparison, we addition-
ally re-train baselines on the 11 classes and directly eval-
uate their performance on the unseen 4 classes. Results
are shown in Table 2, where our MoML also exhibits some
adaptability w.r.t. different unseen motion categories.

4.3. Running Time

To verify the efficiency of MoML, we compare the running
time of offline-trained baselines to the corresponding on-
line adaptive modifications, including MoML with FC/GC-

based MoAdapters and Fast-MoML. Meanwhile, to show
the superiority of MoML against vanilla MAML [3] that up-
date the entire model during adaptation. For gradient-based
methods, we adopt 5 times of gradient update. Shown in
Figure 2, our MoML achieves improvement on predictive
accuracy while inevitably becoming more time-consuming,
but is still significantly faster than conventional MAML.

4.4. More Visualizations

We additionally visualize another case greeting, shown in
Figure 3. The motion appears varied that changes from
waving right hand, putting hand down, waving left hand,
putting hand down, to raising both hands, which is difficult
to predict accurately. With MoML, we achieve more correct
motion tendencies than offline-trained baseline.

5. Limitations

In real-world applications, the observation may not be clean
and may involve occlusions or noises. How to deal with
incomplete observed human poses remains a challenge for
future study. On the other hand, model update during in-
ference inevitably leads to more time consumption, how to
maintain the online adaptive performance as well as consid-
ering time costs requires further research.
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Figure 2. Comparisons of running time and MPJPE errors. +MAML means updating the entire model.
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Figure 3. Another visualized case on greeting. In each case, we draw motion contents in eight seconds. The significant predictive errors
marked in red boxes are alleviated by our adaptive setting of MoML and marked in green boxes.
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