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A. Distilled Images Comparison
Several additional examples of distilled images are presented
in Figure 6. Besides, we conduct a meticulous compari-
son between our proposed RDED and the closest approach,
SRe2L. The distilled images generated by SRe2L are scruti-
nized in Figure 7, revealing two noteworthy observations:
• SRe2L exhibits a limitation in generating diverse features

within each distilled image.
• The diversity and realism of distilled images within each

class are notably lacking.
In contrast, our proposed method, RDED, demonstrates a
superior capability to achieve high diversity in both the fea-
tures within individual images and across images within each
class, all while maintaining a high level of realism.

B. V-information Theory
B.1. Definitions

The following definitions, as outlined by Xu et al. [42], es-
tablish the groundwork for our discussion:

Definition 2 (Predictive Family). Let Ω = {f : X ∪{∅} →
P(Y)}. V ⊆ Ω is a predictive family if it satisfies

∀f ∈ V,∀P ∈ range(f), ∃f ′ ∈ V, (11)

s.t. ∀x ∈ X, f ′[x] = P, f ′[∅] = P .

A predictive family denotes a collection of permissible
predictive models (observers) available to an agent, often
constrained by computational or statistical limitations. Xu
et al. [42] term the supplementary criterion in (2) as optional
ignorance. In essence, this implies that within the frame-
work of the subsequent prediction game we delineate, the
agent possesses the discretion to disregard the provided side
information at thier discretion.

Definition 3. Consider random variables X and Y with
corresponding sample spaces X and Y . Let ∅ denote a
null input that imparts no information about Y . Within the
context of a predictive family V ⊆ Ω = {f : X ∪ ∅ →
P(Y)}, the predictive V-entropy is defined as:

HV(Y |∅) = inf
f∈V

Ey∼Y [− log f [∅](y)] . (12)

Similarly, the conditional V-entropy is expressed as:

HV(Y |X) = inf
f∈V

E[− log f [x](y)] . (13)

Here, log quantifies the entropies in nats.

In essence, f [x] and f [∅] generate probability distribu-
tions over the labels. The objective is to identify f ∈ V that
maximizes the log-likelihood of the label data, both with
(13) and without the input (12).

Definition 4. Consider random variables X and Y with
respective sample spaces X and Y . Within the context of a
predictive family V , the V-information is defined as:

IV(X → Y ) = HV(Y |∅)−HV(Y |X) . (14)

Given the finite nature of the dataset, the estimated V-
information may deviate from its true value. Xu et al. [42]
establish PAC bounds for this estimation error, with less
complex V and larger datasets yielding more precise bounds.
Besides, several key properties of V-information, enumer-
ated by Xu et al. [42], include:
• Non-Negativity: IV(X → Y ) ≥ 0
• Independence: If X is independent of Y , IV(X → Y ) =
IV(Y → X) = 0.

• Monotonicity: For V ⊆ U , HV(Y |∅) ≥ HU (Y |∅) and
HV(Y |X) ≥ HU (Y |X).

B.2. Intuition of V-information on Distilled Dataset

Maximizing the V-information IV(X → Y ) for real-world
datasets proves intractable, primarily attributed to the inher-
ent disparity between the boundless information sources and
the constrained capabilities of observers within the predictive
family V . A promising avenue arises, however, in the form
of distilled datasets, wherein information is derived from a
finite original full dataset. This ensures the existence of an
optimal predictive family V ⊆ Ω exemplified by observer
models trained on the original full dataset. Consequently,
the realism of the distilled dataset can be precisely assessed
by leveraging this (almost) optimal predictive family.

Furthermore, the upper bound of diversity in the distilled
dataset can be reliably guaranteed by the finite information
(diversity) encapsulated within the original full dataset. This
stands in stark contrast to the challenging task of limiting
the diversity inherent in real-world datasets.

Data realism and V-information. Consider an observer
(predictive) family V capable of mapping image input X to
its corresponding label output Y . If we transform the images
X into encrypted versions or introduce additional noisy fea-
tures beyond their natural background noise, predicting Y
given X with the same V becomes more challenging.



To capture this intuition, a framework termed V-
information [42] generalizes Shannon information 5, measur-
ing how much information can be extracted from X about Y
when constrained to observers in V , denoted as IV(X → Y ).
When V encompasses an infinite set of observers, corre-
sponding to unbounded computation, V-information reduces
to Shannon information.

Likewise, unrealistic output labels for Y , such as en-
crypted or noisy labels, or even simplistic one-hot labels,
prove inadequate in representing the precise information
contained within images X . This inadequacy leads to di-
minished predictive accuracy, even when employing robust
observers from the set V .

Data diversity from the perspective of V-information.
V-information IV(X → Y ) serves as a conceptual tool for
gauging the interconnected information between images X
and labels Y . Consequently, this measurement is inherently
influenced by the overall amount of information within both
images X and labels Y . However, in the context of natural
image datasets like ImageNet-1K [6], the diversity (infor-
mation entropy) between images X and labels Y is notably
imbalanced. Specifically, the labels Y often encompass
considerably less information compared to the images X ,
thereby constraining V-information IV(X → Y ).

Summary. Enhancing the diversity and realism of both
the input X and the output Y in a dataset necessitates maxi-
mizing the V-information IV(X → Y ).

B.3. Maximizing V-information in Practice

Maximizing diversity of distilled data. Consider a predic-
tive family V = {ϕh, ϕθT } and a distilled dataset Sc =
(Xc, Yc) for class c dataset Tc, we assume:

∀Sc, ∃h ∈ H, s.t.Sc = {(xc, yc) | yc = h(xc)} , (15)

where H = {h : X → Y}. This assumption establishes
the upper bound of diversity term for a distilled dataset Sc,
defined by the V-entropy as follows:

HV(Yc|∅)

= inf
f∈V

E[− log f [∅](yc)]

= inf
f∈V

E[− log f [∅](h(xc))]

≤ inf
f∈V

E[− log f [∅](xc)]

= HV(Xc|∅) .

(16)

5The conventional approach of using Shannon [30]’s mutual information
I(X;Y ) is not suitable in this context. This metric remains unchanged after
the transformation of X , as it permits unbounded computation, including
any necessary for the inverse transformation of images.

Given Tc = (X̂c, Ŷc), where (X̂c, Ŷc) := {(x̂, ŷ)|(x̂, ŷ) ∈
T , ŷ=c}, we have:

HV(Tc|∅)

= HV((X̂c, Ŷc)|∅)

= inf
f∈V

E[− log f [∅](x̂c, ŷc)]

= inf
f∈V

E[− log f [∅](x̂c, c)]

= inf
f∈V

E[− log f [∅](x̂c)]

≥ inf
f∈V

E[− log f [∅](xc)]

≥ HV(Yc|∅) .

(17)

Consequently, the above theoretical analysis can be ex-
tended to the entire dataset T and obtain that: HV(Y |∅) ≤
HV(X|∅) ≤ HV(S|∅) ≤ HV(T |∅) = C, where C is a
constant for a certain T . Thus, we obtain:

HV(Y |∅) ∝ HV(Y |∅)/HV(T |∅) ≤ 1 . (18)

If we maximize the diversity term HV(Y |∅), then the ratio
HV(Y |∅)/HV(T |∅) = 1 and HV(S|∅) = HV(T |∅).

Maximizing realism of distilled data. Given a predictive
family V = {ϕh, ϕθT } and a distilled dataset S = (X,Y ),
our objective is to minimize the realism term defined by the
conditional V-entropy:

HV(Y |X)

= inf
f∈V

E[− log f [x](y)]

≤ E[− log ϕh[x](y)] + E[− log ϕθT [x](y)] .

(19)

To estimate the density value f [x](y), we adopt the approach
proposed by Oord et al. [26]:

f [x](y) =
exp(−ℓ(f(x), y))

Ey′∈Y [exp(−ℓ(f(x), y′))]
, (20)

leading to:

HV(Y |X)

≤ E[− log
exp(−ℓ(ϕh(x), y))

Ey′∈Y [exp(−ℓ(ϕh(x), y′))]
]

+ E[− log
exp(−ℓ(ϕθT (x), y))

Ey′∈Y [exp(−ℓ(ϕθT (x), y
′))]

] .

(21)

Assuming the function ℓ(·) is symmetric, i.e.,

∀z1, z2, s.t. ℓ(z1, z2) = ℓ(z2, z1) , (22)



thus, we derive an alternative objective for minimization:

HV(Y |X)

∝ E[− log
exp(−ℓ(ϕh(x), ϕθT (x)))

Ex∈X [exp(−ℓ(ϕh(x), ϕθT (x)))]
]

+ E[− log
exp(−ℓ(ϕθT (x), y))

Ey′∈Y [exp(−ℓ(ϕθT (x), y
′))]

]

∝ E[− log exp(−ℓ(ϕh(x), ϕθT (x)))]

+ E[− log exp(−ℓ(ϕθT (x), y))]

= E[ℓ(ϕh(x), ϕθT (x)) + ℓ(ϕθT (x), y)] .

(23)

This analysis underpins our strategy to enhance the realism of
distilled data by minimizing HV(Y |X), we focus on samples
x that minimize ℓ(ϕh(x), ϕθT (x)) and set y = ϕθT (x).

C. Detailed Implementation
C.1. Pre-training Observer Models

Following prior studies [1, 13, 44, 52], we employ pre-
trained observer models to distill the dataset, as illustrated
in Table 2: 1) ResNet-18 for ImageNet-10, ImageNette,
ImageWoof, ImageNet-100, ImageNet-1K; 2) modified
ResNet-18 for CIFAR-10, CIFAR-100 and Tiny-ImageNet;
3) ConvNet-3 for CIFAR-10, CIFAR-100; 4) ConvNet-4 for
Tiny-ImageNet; 5) ConvNet-5 for ImageWoof, ImageNette;
6) ConvNet-6 for ImageNet-100.

C.2. Implementing RDED algorithm.

To gain an intuitive understanding the Algorithm 1 of our
proposed RDED, we expound on the implementation de-
tails in this section. Given a comprehensive real dataset T ,
such as ImageNet-1K [6], we define three tasks involving
distilling this dataset into smaller datasets with distinct IPC
values, specifically, IPC = 50, 10, and 1. Remarkably,
our RDED demonstrates the capability to encompass mul-
tisize distilled datasets through a single distillation process,
effectively handling those with IPC = 50, 10, and 1.

Extracting key patches. For each class set Tc we uni-
formly pre-select a subset contains 300 images denoted as
T ′
c = {x̂i}300i=1. Each pre-selected image x̂i undergoes ran-

dom cropping into K = 5 patches6. These patches are
represented as {ξi,k}K=5

k=1 , and the realism score si,k =
−ℓ(ϕθT (ξi,k), yi) is calculated for each patch ξi,k, result-
ing in a set of scores {si,k}K=5

k=1 . Subsequently, the key
patch ξi,⋆ with the highest realism score si,⋆ is selected to
represent the corresponding image xi. This process yields a
key patch set with scores {ξi,⋆, si,⋆}300i=1, which is stored for
future use.

6We empirically set K = 5, although smaller values, such as K = 1,
can be chosen for expedited implementation of our algorithm RDED.

Capturing class information. We prioritize key patches,
denoted as {ξi,⋆}300i=1, based on their associated scores
{si,⋆}300i=1 to construct a well-ordered set {ξj,⋆}300j=1. In ad-
dressing the initial task of synthesizing a refined dataset
with IPC = 50, we strategically choose the top-(200 =
IPC ×N) key patches from the set, denoted as {ξj,⋆}200j=1.
Likewise, for the two subsequent tasks, characterized by
IPC = 10 and IPC = 1, we iteratively refine the selection
by opting for the top-40 and top-4 key patches, denoted as
{ξj,⋆}40j=1 and {ξj,⋆}4j=1, respectively.

Images reconstruction. To construct the ultimate im-
age xj , we systematically draw N = 4 distinct patches
{ξj,⋆}N=4

j=1 without replacement and concatenate them. This
procedure is iterated times to generate the ultimate distilled
image set {xj}IPCj=1.

Labels reconstruction. In accordance with the methodol-
ogy presented in SRe2L [44], we undertake the process of
relabeling the distilled images through the generation and
storage of region-level soft labels, denoted as yj , employing
Fast Knowledge Distillation [32]. To achieve this, for each
distilled image xj , we perform random cropping into several
patches, concurrently documenting their coordinates on the
image xj . Subsequently, soft labels yj,m are generated and
stored for each m-th patch, ultimately culminating in the
aggregation of these labels to form the comprehensive yj .

C.3. Training on Distilled Dataset

Following prior investigations [4, 44, 45], we employ data-
augmentation techniques, namely RandomCropResize [41]
and CutMix [46]. Further elucidation is available in our
publicly accessible code repository at https://to-be-released.

D. Experiment
In this section, unless otherwise specified, we adopt ResNet-
18 as the default neural network backbone for both the dis-
tillation process and subsequent evaluation. The parameters
IPC = 10 and pre-selected subset size |T ′

c | = 300 are con-
sistently applied. For high-resolution datasets, we set the
number of patches N = 4 within one distilled image, while
for datasets with a resolution lower than 64 × 64, we use
N = 1. All settings are consistent with those in Section 5.

D.1. Multisize Dataset Distillation

In their recent work, He et al. [15] introduced Multisize
Dataset Condensation (MDC), a novel approach that consol-
idates multiple condensation processes into a unified proce-
dure. This innovative method produces datasets with varying
sizes, offering dual advantages:
• DC eliminates the necessity for extra condensation pro-

cesses when distilling multiple datasets with varying IPC.



RDED (Ours) SRe2L
Verifier\Observer ResNet-18 EfficientNet-B0 MobileNet-V2 VGG-11 Swin-V2-Tiny ResNet-18 EfficientNet-B0 MobileNet-V2

ResNet-18 42.3 ± 0.6 31.0 ± 0.1 40.4 ± 0.1 36.6 ± 0.1 17.2 ± 0.2 21.7 ± 0.6 11.7 ± 0.2 15.4 ± 0.2
EfficientNet-B0 42.8 ± 0.5 33.3 ± 0.9 43.6 ± 0.2 35.8 ± 0.5 14.8 ± 0.1 25.2 ± 0.2 11.4 ± 2.5 20.5 ± 0.2
MobileNet-V2 34.4 ± 0.2 24.1 ± 0.8 33.8 ± 0.6 28.7 ± 0.2 11.8 ± 0.3 19.7 ± 0.1 9.8 ± 0.4 10.2 ± 2.6

VGG-11 22.7 ± 0.1 16.5 ± 0.8 21.6 ± 0.2 23.5 ± 0.3 7.8 ± 0.1 16.5 ± 0.1 9.3 ± 0.1 10.6 ± 0.1
Swin-V2-Tiny 17.8 ± 0.1 19.7 ± 0.3 18.1 ± 0.2 15.3 ± 0.4 12.1 ± 0.2 9.6 ± 0.3 10.2 ± 0.1 7.4 ± 0.1

Table 5. Evaluating ImageNet-1K top-1 accuracy on cross-architecture generalization. Distill dataset with VGG-11 [33], Swin-V2-
Tiny [22], ResNet-18 [14], EfficientNet-B0 [36], MobileNet-V2 [29], and then versus transfer to other each other architecture.

• It facilitates a reduction in storage requirements by reusing
condensed images.

Remarkably, our proposed RDED, also exhibits a mecha-
nism that enables the synthesis of distilled datasets with
adaptable IPC without incurring additional computational
overhead (c.f. Section C). For a comprehensive comparison,
the superior performance of our RDED over MDC on larger
distilled datasets is demonstrated in Table 6.

CIFAR-10 CIFAR-100
Method \ IPC 1 10 50 1 10 50

MDC 47.8 62.6 74.6 26.3 41.4 53.7
Ours 23.5 50.2 68.4 19.6 50.2 57.0

Table 6. Comparison with Multisize Dataset Condensation. The
top-1 validation accuracy is evaluated when both MDC and our
RDED are targeting at distilling dataset with IPC = 50. The other
two distilled datasets with IPC = 10 and IPC = 1 are subsets
from the one with IPC = 50. The neural network backbone used
for distillation and evaluation is Conv-3.

D.2. CoreSet Selection Baselines

In our investigation, we assess the top-1 validation accu-
racy resulting from the application of three CoreSet selec-
tion strategies for dataset distillation: 1) Random; 2) Herd-
ing [40]; 3) K-Means [11]. The outcomes, as depicted in
Table 7, indicate catastrophically poor performance when
employing these selection methods directly in the context of
dataset distillation.

Dataset Random Herding K-Means

ImageNet-10 36.7 ± 0.1 33.8 ± 0.4 36.5 ± 0.3
ImageNet-100 10.8 ± 0.2 12.6 ± 0.1 13.5 ± 0.4
ImageNet-1K 4.4 ± 0.1 5.8 ± 0.1 5.5 ± 0.1

Tiny-ImageNet 7.5 ± 0.1 9.0 ± 0.3 8.9 ± 0.2
CIFAR-100 10.9 ± 0.1 13.3 ± 0.3 12.9 ± 0.1
CIFAR-10 25.1 ± 0.5 28.4 ± 0.1 27.7 ± 0.2

Table 7. Comparison of different CoreSet selection-based
dataset distillation baselines. Experiments are carried out to
evaluate three widely used coreset selection methods.

D.3. Cross-architecture Generalization

We expanded our experimental evaluations by incorporating
various neural network architectures that lack batch normal-
ization [16, 44]. This extension aims to thoroughly assess
the cross-architecture generalization capabilities of our pro-
posed RDED. The results presented in Table 5 unequivocally
demonstrate the superior performance of RDED in compar-
ison to the SOTA method SRe2L. Notably, our algorithm
exhibits remarkable effectiveness even in scenarios char-
acterized by substantial architectural disparities, such as
knowledge transfer from ResNet-18 to Swin-V2-Tiny.

D.4. Detailed Ablation Study

In addition to the experiments detailed in Section 5.5, we
conduct a more comprehensive ablation study, delving into
the various approaches and hyperparameters employed in
our proposed RDED.

On the impact of |T ′
c | and N . To assess the influence of

the pre-selected subset size |T ′
c | and the number of patches

within each distilled image N , our experiments are extended
to lower-resolution datasets, namely Tiny-ImageNet, CIFAR-
10, and CIFAR-100. Figure 5 illustrates that the configura-
tions with |T ′

c | = 300 and N = 1 are suitable for low-
resolution datasets.
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Figure 5. Ablation study on |T ′
c | and N , i.e., the pre-selected

subset size T ′
c (left), and the number of patches N within each

distilled image (right). The lemon •, purple •, and turquoise •
denote CIFAR-10, CIFAR-100, and Tiny-ImageNet respectively.



Dataset Original +EKP +CCI +IR +LR

ImageNet-10 30.6 ± 0.4 34.5 ± 1.1 39.6 ± 1.6 49.9 ± 1.5 54.3 ± 2.7
ImageNet-100 8.2 ± 0.2 9.8 ± 0.1 15.0 ± 0.5 24.1 ± 0.1 35.9 ± 0.1
ImageNet-1K 3.2 ± 0.1 3.8 ± 0.1 7.2 ± 0.3 15.2 ± 0.1 42.1 ± 0.1

Tiny-ImageNet 6.9 ± 0.1 8.8 ± 0.1 15.7 ± 0.2 - 41.9 ± 0.2
CIFAR-100 11.8 ± 0.1 13.2 ± 0.3 18.6 ± 0.3 - 42.6 ± 0.1
CIFAR-10 27.7 ± 0.6 26.8 ± 0.2 27.8 ± 0.5 - 35.8 ± 0.0

Table 8. Effectiveness of accumulated techniques in RDED. The validation accuracy undergoes a gradual evolution as we sequentially
apply the four techniques in our RDED. Entries marked with “-” are absent because of the N = 1 setting for low-resolution datasets,
rendering the Images Reconstruction (IR) step impractical.

Effectiveness of each technique in RDED. To validate
the effectiveness of all four components within our RDED,
we conduct additional ablation studies for each of them,
namely, Extracting Key Patches (EKP), Capturing Class In-
formation (CCI), Images Reconstruction (IR), and Labels
Reconstruction (LR), corresponding to the techniques out-
lined in Sections 4.2 and 4.3. Table 8 illustrates that all four
techniques employed in RDED are essential for achieving
the remarkable final performance. Furthermore, a plausible
hypothesis suggests that LR plays a crucial role in generat-
ing more informative (diverse) and aligned (realistic) labels
for distilled images, thereby significantly enhancing perfor-
mance.

Dataset Random Herding K-Means Realism

ImageNet-10 44.7 ± 2.5 47.9 ± 0.3 49.3 ± 1.1 53.3 ± 0.1
ImageNet-100 29.8 ± 0.7 29.7 ± 0.5 28.9 ± 0.1 36.0 ± 0.3
ImageNet-1K 37.9 ± 0.5 38.4 ± 0.1 38.2 ± 0.1 42.0 ± 0.1

Tiny-ImageNet 40.2 ± 0.0 41.1 ± 0.1 40.1 ± 0.1 41.9 ± 0.2
CIFAR-100 41.4 ± 0.5 42.6 ± 0.1 41.8 ± 0.1 42.6 ± 0.1
CIFAR-10 34.3 ± 0.1 35.5 ± 0.6 37.9 ± 0.3 35.8 ± 0.1

Table 9. Comparison of different patch selection strategies
in RDED. Experiments are conducted to compare our proposed
realism-score-based data selection strategy over three widely used
coreset selection methods.

Effectiveness of selecting patches through realism socre.
Table 9 demonstrates that our realism-score-based selec-
tion method, specifically the Capturing Class Information
(CCI) technique outlined in Algorithm 1, consistently out-
performs alternative approaches, except for CIFAR-10. A
plausible inference is that the selection of more realistic im-
ages contributes to the observer model’s ability to reconstruct
correspondingly realistic labels (cf. Section 4.3), thereby
optimizing our objective (3).



(a) Random selection of original dataset

(b) MTT [1]

(c) GLaD [2]

(d) SRe2L [44]

(e) Herding [40]

(f) RDED (Ours)

Figure 6. Visualization of images synthesized using various dataset distillation methods. We consider the ImageNet-Fruits [1] dataset,
comprising a total of 10 distinct fruit types.



(a) SRe2L [44]

(b) RDED (Ours)

Figure 7. Visualization of images synthesized using two dataset distillation methods. We consider a subset of the ImageNet-Fruits [1]
dataset, comprising a total of 4 distinct fruit types.


