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1. Further Analysis of Designs in LPMFlow
1.1. Details of Region-based PE

We clarify that region-based position embedding (PE) is the
2D relative positional encoding [14], in which region base
is explained as the procedure to separate the source and
target images with 2D patch regions. Extending from the
1D sequence-relative position computations in natural lan-
guage processing tasks, 2D Embedding extends the matrix
of relative position into 2D format along the x & y axes in
the procedure of attention. In order to be compatible with
the structure designed in LARL for the joint processing of
source and target features, we separately perform region-
based relative position encoding on four regions (namely
source to source, source to target, target to source, and tar-
get to target). The introduction of the region-based position
encoding can better encode orientation and spatial layout.
The efficacy of this region-based position embedding (PE)
is substantiated by the ablation studies in the main paper,
which demonstrates this structure can contribute to the en-
hancement of semantic correspondence accuracy.

Table 1. Analysis of LPMFlow Designs.

Methods
SPair-71K
αbbox = 0.1

LPMFlow 65.6

Analysis on Representation Learning

Isolated Dual Self-attention 63.5 (2.1↓)
Bidirectional Cross-attention 64.0 (1.6↓)

Analysis on Multi-scale Integration

w/o Cross-Scale Flow Integration 64.7 (0.9↓)
w/o C2F Refinement (8×8) 64.9 (0.7↓)

1.2. Analysis on Representation Learning

To prove the effectiveness of our designed structure for rep-
resentation learning, we compare our structure with other
two structures namely dual path isolated self-attention and
dual path structure with bidirectional cross-attention. Our
structure demonstrates superior performance compared to
the others, achieving 2.1 and 1.6 improvement (shown in
Table 1). We also provide further visualization with/without
LARL in Figure 3. The results show our LARL can better
extract shared layout information for an image pair.

Besides, we clarify that to calculate the foreground
weight, we use the averaged [cls] tokens of source and target
images as global semantic tokens. We calculate the cosine
distance between the global semantic and the patch token
of the source image with max-min normalization to gener-
ate a weight map. We explain this as the foreground area is
both the salient and shared areas for source and target im-
ages. We provide a visualization to prove our weight map
can extract foreground patch tokens in Figure 1.

1.3. Analysis on Multi-scale Integration

The Multi-scale Integration aims to 1) generate fine-grained
and multi-scale features and build up cross-scaled 4D
matching tensors implemented by PFSR; 2) integrate the
multi-scaled correlation and refine them into pixel-level cor-
respondence implemented by MMFI. In these two mod-
ules, we further analyze the introduction for the correlation
of asymmetric scales and the design of the coarse-to-fine
matching flow refinement structure. As the results shown
in Table 1, when we remove the cross-scaled 1×2 and 2×1
matching tensor, the performance declines by 0.9%. We
add the ablation for coarse-to-fine refinement structure with
constant 8×8 window size and the performance declines
by 0.7%. Further visualization for the effectiveness of two
modules PFSR and MMFI are also provided in Figure 3.
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Table 2. Per-class level quantitative evaluation results on SPair-71k [10] benchmark, ∗ stands for the method implemented with iBOT-B
backbone same with LPMFlow, the best results are in bold. TMatcher is TransforMatcher for short.

Methods aero. bike bird boat bott. bus car cat chai cow dog hors. mbik. pers. plan. shee. trai. tv all

NC-Net[12] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.0 14.8 9.6 24.2 31.1 20.1
SCOT [6] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35 27.7 24.4 48.4 40.8 35.6
DHPF [11] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3
CHM [8] 49.6 29.3 68.7 29.7 45.3 48.4 39.5 64.9 20.3 60.5 56.1 46.0 33.8 44.3 38.9 31.4 72.2 55.5 46.3
CATs [2] 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58 49.9
MMNet[15] 55.9 37.0 65.0 35.4 50 63.9 45.7 62.8 28.7 65.0 54.7 51.6 38.5 34.6 41.7 36.3 77.7 62.5 50.4
TMatcher[5] 59.2 39.3 73.0 41.2 52.5 66.3 55.4 67.1 26.1 67.1 56.6 53.2 45.0 39.9 42.1 35.3 75.2 68.6 53.7

CATs∗[2] 56.7 41.3 77.8 35.0 54.8 59.8 45.2 69.9 31.4 63.7 57.6 62.5 46.7 49.1 43.2 43.5 76.4 64.1 55.2
TMatcher∗[5] 57.1 47.4 83.5 42.3 56.8 57.0 55.4 75.3 34.5 66.1 64.2 60.2 52.8 55.2 40.5 46.0 75.1 65.8 57.9
ACTR∗[13] 65.1 48.5 82.3 50.4 55.9 65.3 63.1 72.8 35.8 74.1 70.3 68.9 58.6 57.1 46.8 49.5 84.4 73.3 62.1
LPMFlow∗ 71.4 54.8 83.2 50.3 57.0 75.4 68.9 79.3 41.1 78.4 74.1 73.7 58.7 56.9 48.7 54.7 87.5 74.6 65.6
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Figure 1. Visualization of generated foreground weight.

2. Further Results for LPMFlow
2.1. Class Level Evaluation Results on SPair-71k

Table 2 shows our proposed LPMFLow outperforms all
previous works with CNN-based backbones as well as
CATs [2], TransforMatcher [5] and ACTR [13] in iBOT-
B backbone clearly in most categories (15 of 18) of SPair-
71K [9]. Especially in more challenging categories such
as {bike, bus, car, and horse} that previous works [2, 5,
7, 13] often fail, our PCK@αbbox 0.1 accuracy improves
by {6.3%, 9.1%, 5.8% and 4.8%}. Class-level evaluation
results indicate that LPMFlow can provide more accurate
correspondence compatible with various object categories.

2.2. Evaluation of LPMFlow on MAE & iBOT-22K

We conduct experiments to investigate the impact of initial
image-level feature quality on our designed pipeline. We re-
place the pre-trained weights with the MAE [3] method pre-
trained on ImageNet 1K and iBOT [16] method pre-trained
on ImageNet 22K. Results show that LPMFlow using MAE

Figure 2. Performance of our method with different initial intensi-
ties of RPTC guidance.

performs well with 65.9% slightly higher than that using
iBOT pre-trained parameters. And LPMFlow using iBOT-
22K performs at 66.4% also improves from the method us-
ing iBOT-1K backbone. This experiment proves that our
LPMFlow has the potential to further improve the perfor-
mance with better initial image features provided.

2.3. Further Ablation Analysis

We prove more ablations for LPMFlow on SPair-71K. We
report the ablation results for topK in LARL as 0:63.5%,
16:64.7%, 32:65.0%, 64:65.6%, 128:64.3% which shows
K=64 is an effective setting. We also evaluate the design
of the initial λ from 0 to 0.5 for the RPTC task in Fig-
ure 2. Our method achieves the best performance when the
intensity of RPTC guidance is set as 0.2. We set the de-
cline rate for λ as 10% until λ=0. We provide the ablation
on the decline rate as 0%:64.5%, 5%:65.0%, 10%:65.6%,
15%:65.2%, 20%:65.2%, 25%:64.7%. These results prove
the effectiveness of our design in decline rate.



3. Additional Visualization

3.1. Effectiveness of Three Designed Modules

We provide more visualization results in Figure 3 for LPM-
Flow with and without designed three modules. The chal-
lenge of objects with similar appearances such as the cor-
ners of a bus or the landing gear of an aeroplane usually
leads to mismatching. As the target heatmaps in the first
case show, LARL can fix incorrect representation with the
consistency of the geometric layout of the components for
objects in the same category. For the PFSR, the second case
shows the fusion of cross-scaled matching tensors can pro-
vide more accurate matching for an object pair of different
sizes. For the MMFI, the third case shows in pixel-level cor-
respondence, that the usage of MMFI can better distinguish
the matching relationship among adjacent pixels.

3.2. Comparison of Qualitative Results

We provide more visualization results in three gains namely
warping results, dense matching flows, and matching de-
tails. We use the thin-plate splines algorithm [1] for im-
age warping and the procedure is instructed by predicted
key points. The warping results in Figure 4 demonstrate
the effectiveness of our method by providing an overview
of correspondence between object pairs. We provide the
dense flow result for the foreground objects. Without ad-
ditional supervision (sparse keypoint annotation in SPair-
71K only), we acquire the foreground object using the co-
sine distance between averaged [cls] tokens of the image
pair and the patch token similar to the implementation for
generating the foreground weight map. The comparison of
dense flow in Figure 5 shows except for having good cor-
respondence in key areas, our method can also distinguish
differences among nearby pixels and construct pixel-level
matching. The visual comparison of matching details in
Figure 6-8 also indicate the effectiveness of LPMFlow.
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ACTR LPMFlow(ours)Input Images CATs w/o PFSR

ACTR LPMFlow(ours)Input Images CATs w/o LARL

ACTR LPMFlow(ours)Input Images CATs w/o MMFI

Figure 3. Visualization of the performance of three modules on three challenges. We evaluate the effectiveness of LARL for confusing
regions with similar appearances in the first case. We evaluate the effectiveness of PFSR for objects with inconsistent scales in the second
case. We evaluate the effectiveness of MMFI for the ability to distinguish nearby pixels. Except for the ablation models and our LPMFlow,
we also visualize the results of CATs [4] and ACTR [13].



SCOT MMNet ACTR LPMFlow(ours) GroundtruthSource Target CATs

Figure 4. Visualization of dense warping result for state-of-the-art methods namely SCOT [7], CATs [2], MMNet [15] and ACTR [13]
compared with our LPMFlow. Thin-plate splines algorithm [1] is used for image warping with instructed by predicted key points.



MMNet ACTR LPMFlow(ours)Input Images CATs

Figure 5. Visualization of dense matching flow for state-of-the-art methods namely CATs [2], MMNet [15] and ACTR [13] compared with
our LPMFlow.



SCOT MMNet ACTR LPMFlow(ours) GroundtruthCATs

Figure 6. Visualization of matching result. The upper image is the source image the below image is the target image, and the crosses are
the ground truth labels. We compare the results of SCOT [7], CATs [4], MMNet [15], ACTR [13] and our LPMFlow.



SCOT MMNet ACTR LPMFlow(ours) GroundtruthCATs

Figure 7. Visualization of matching result. The upper image is the source image the below image is the target image, and the crosses are
the ground truth labels. We compare the results of SCOT [7], CATs [4], MMNet [15], ACTR [13] and our LPMFlow.



SCOT MMNet ACTR LPMFlow(ours) GroundtruthCATs

Figure 8. Visualization of matching result. The upper image is the source image the below image is the target image, and the crosses are
the ground truth labels. We compare the results of SCOT [7], CATs [4], MMNet [15], ACTR [13] and our LPMFlow.
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