
Seg2Reg: Differentiable 2D Segmentation to 1D Regression Rendering for 360
Room Layout Reconstruction

Supplementary Material

The coordinate system used in this work is explained in
detail in Sec. 1. In Sec. 2, we show the results under various
setups of the baseline models reproduced by our PanoLay-
outStudio. Additional technical details about layout 3D
warping and Seg2Reg can be found in Sec. 3 and Sec. 4.
Finally, we present an extensive qualitative comparison in
Sec. 5.

1. Coordinate system
As we only consider a single image, the camera position is
set as the world origin. We use a z-down positive world
coordinate system where the positive z points toward the
floor.

Image to world. Let i, j be the image row and column
index of a pixel. We can transform them into spherical co-
ordinates by

u =

(
(j + 0.5)

W
− 0.5

)
· 2π , (1a)

v =

(
(i+ 0.5)

H
− 0.5

)
· π , (1b)

where u is azimuthal angle and v is the angel with respect
to the xy-plane. We can then lift the pixel to 3D by

x = d · cos(v) sin(u) , (2a)
y = d · cos(v) cos(u) , (2b)
z = d · sin(v) , (2c)

where d is the pixel depth.

World to image. The inverse transformation of Eq. (2) is

u = arctan2(x, y) , (3a)

v = arctan2
(
z,
√

x2 + y2
)

, (3b)

which is used in the operation EqProj (main paper Eq. (2d))
to project sampled 3D points on the floor or the ceiling
planes back to the equirectangular image for density inter-
polation.

2. Baseline tuning
We implement HorizonNet [8], HoHoNet [9],
LED2Net [11], and LGTNet [4] into our codebase—
PanoLayoutStudio. In this section, we explore various
setups of these reproduced baselines and evaluate on
MatterportLayout [13] valid set. We use a unified training
recipe for all the methods—Adam optimizer with 1e−4

ResNet34

ResNet50

ResNet101

HRNet18

HRNet32

ConvNeXt-t
SwinT-t

backbone

82.75

83.00

83.25

83.50

83.75

84.00

84.25

84.50

3D
 Io

U

Figure 1. Results of different backbones. The results of HR-
Net32 and SwinT-t are obtained from only one training seed.

learning rate trained for 1k epochs. We activate Stochastic
Weight Averaging [3] in the last 200 epochs to stabilize
training. Except stated otherwise, we use the basic setup
with LGT-Net [4]—ResNet-34 as backbone; standard left-
right flip, circular shifting, PanoStretch [8], and luminance
jittering as data augmentation. We accumulate the results
from different training seeds as box plots.

Backbones. We show the results with different back-
bones, including ResNet [2] and the more advanced HR-
Net [12], ConvNeXt [6], and SwinTransformer [5], in
Fig. 1. Overall, HRNet performs especially well in this task;
ConvNeXt is slightly above ResNet; the SwinTransformer
backbone seems to be unsuitable for this task. Increasing
the number of backbone layers offers limited merits. The
result with ResNet101 is even worse than ResNet34. Please
note that all the results are trained with the same recipe. It
could be possible that larger models or different network
architectures need different training recipes. More future
research about the different network architectures for this
task would be valuable.

1D decoder and model head. We decouple the
regression-based decoder into the architecture and the
layout representations. The results are presented in Fig. 2.
The 1D network architecture of HorizonNet [8], Ho-
HoNet [9], and LGTNet [4] are RNN [7], Transformer [10],

bon. depth depth (MLP proj.)
layout repr.

81

82

83

3D
 Io

U
arch = RNN

bon. depth depth (MLP proj.)
layout repr.

arch = Transformer

bon. depth depth (MLP proj.)
layout repr.

arch = SWG

Figure 2. Results of the regression-based methods. Originally, RNN is employed by HorizonNet, Transformer is employed by HoHoNet,
and SWG is proposed by LGT-Net as the 1D decoder. The layout representation ‘bon’ indicates predicting per-column layout boundary on
the image space while ‘depth’ is for per-column layout depth. ‘MLP proj.‘ indicates two non-linear layers are added at the very end of the
decoder before predicting the layout.

w/o PanoStretch basic w/ RandAug
augmentation

80

81

82

83

84

3D
 Io

U

Figure 3. Results of modified basic data augmentations. PanoS-
tretch is crucial to recent methods to achieve state-of-the-art re-
sults. Employing RandAug can further improve the result.

and SWG (an adaptation of Swin-transformer [5]), respec-
tively. HorizonNet proposes to predict per-column layout
boundary on image space, while LGT-Net proposes to pre-
dict per-column layout depth with a layout height. For the
architecture, SWG significantly outperforms Transformer
and RNN. Directly predicting layout depth consistently
improves the results from all architectures compared to
predicting layout boundary on the image space. Originally,
the features from all the architecture are just followed by
a linear projection layer to predict layout. We also try to
add two additional non-linear MLP layers, which improve
RNN and Transformer decoder but degrade SWG results.

Interestingly, we find directly training SWG decoder to
predict layout boundary fails to converge. We find it is be-
cause i) the output variance of SWG is high, and ii) the
layout boundary prediction uses sigmoid to constraint the
output range. The combination of these two causes the last
layer to ‘die’ as predicting a large absolute value receives

B D D+G+N
loss

82.00

82.25

82.50

82.75

83.00

83.25

83.50

3D
 Io

U
layout repr.

bon.
depth

Figure 4. Results of regression training loss. Training with lay-
out depth loss improves results even when the model predicts lay-
out boundary on image space. Directly predicting layout depth
achieves the best result. Adding gradient and normal losses to reg-
ularize layout depth does not improve.

zero gradient from the sigmoid function. As a workaround,
we multiply the output value of SWG by 0.1 for the lay-
out boundary prediction. The result suggests that predicting
layout boundary may be more unstable compared to pre-
dicting layout depth, which may be one of the reason for
the superiority of predicting layout depth.

Augmentations. The basic augmentation consists of left-
right flip, circular shifting, PanoStretch [8], and luminance
jittering. In Fig. 3, we show the results of ablating PanoS-
tretch and replacing luminance jittering with the modified
modified RandAug [1]. The results show that PanoStretch
is crucial to the quality, highlighting the importance of
geometric-based data augmentation. Using RandAug intro-
duces a more diverse image appearance and improves re-
sults further.

Losses. We explore existing training losses for regression-
based methods. The result is presented in Fig. 4. LED2-
Net [11] proposes to render layout depth from the predicted
layout boundary on the image space, which we find indeed
can improve boundary prediction quality. We try the gradi-
ent and normal losses employed by LGT-Net [4] but do not
observe improvement in our reproduction.

3. Layout 3D warping—more details

The proposed LayoutWarp (main paper Eq. (16)) enables
us to produce more diverse geometrically augmented views
by crafting layout polygon transformation functions Tv and
layout height transformation functions Th. In the following,
we detail how we compute the source image coordinates
from the destination image based on the given transforma-
tion so that we can apply backward warping to form the
transformed image.

Source image coordinate computation. Recap that
LayoutWarp takes a source image I and it’s layout poly-
gon {vi}Ki=1, layout height h, and their transformation func-
tions Tv,Th as input to form the warped image I ′:

I ′ = LayoutWarp
(
I, {vi}Ki=1, h,Tv,Th

)
.

Let

{v′
i}Ki=1 = Tv

(
{vi}Ki=1

)
, (4a)

h′ = Th (h) , (4b)

where {v′}Ki=1 and h′ are the transformed layout polygon
coordinates and layout height. To do backward warping, for
each target pixel (i′, j′) at the destination image, we want
to compute its corresponding coordinate (i, j) on the source
image following the given layout transformation. We first
use Eq. (1) to compute the spherical coordinate (u′, v′) of
the target pixel. By casting a 2D ray following the azimuthal
angle u′, we can find the ray-polygon intersection point v̂
on the k-th layout polygon edge v′

kv
′
k+1 (let v′

K+1 = v′
1 as

the polygon is closed). The depth term in Eq. (2) is

d′ =

z(floor) · csc(v′), if (i′, j′) ∈ floor(
z(floor) − h′) · csc(v′), if (i′, j′) ∈ ceiling
∥v̂∥ · sec(v′), if (i′, j′) ∈ wall ,

(5)

which lifts the pixel to a 3D point (x′, y′, z′). The corre-
sponding source 3D point is

x = ax′ + by′ , (6a)
y = cx′ + dy′ , (6b)

z = z(floor) − h

h′ · (z
(floor) − z′) , (6c)

where the backward transformation parameters a, b, c, d
align v′

kv
′
k+1 to vkvk+1. Let v′

k = (x′
k, y

′
k) and vk =

Effect Tv Th

Left-right
circular shifting v′

k =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
vk h′ = h

† The rotation θ is shared by all the K vertices.

Left-right flip v′
k =

[
−1 0
0 1

]
vk h′ = h

PanoStretch [8] v′
k =

[
sx 0
0 sy

]
vk h′ = h

† The scaling factors sx, sy are shared by all the K vertices.

Camera height
adjustment v′

k = svk h′ = sh

† The s scales camera height by 1
s

and is shared by all vertices and height.

Random
perturbation v′

k = skvk h′ = h

† Each of the K vertex has it’s own scaling factor.

Table 1. Geometric-based data augmentation by LayoutWarp.

(xk, yk), we solve the following linear system:
x′
k y′k 0 0
0 0 x′

k y′k
x′
k+1 y′k+1 0 0
0 0 x′

k+1 y′k+1

a
b
c
d

 =

xk

yk
xk+1

yk+1

 , (7)

where the solution is

a =
y′k+1 · xk − y′k · xk+1

y′k+1 · x′
k − y′k · x′

k+1

, (8a)

b =
x′
k+1 · xk − x′

k · xk+1

x′
k+1 · y′k − x′

k · y′k+1

, (8b)

c =
y′k+1 · yk − y′k · yk+1

y′k+1 · x′
k − y′k · x′

k+1

, (8c)

d =
x′
k+1 · yk − x′

k · yk+1

x′
k+1 · y′k − x′

k · y′k+1

. (8d)

Note that we assume vk ̸= vk+1 and v′
k ̸= v′

k+1 for all
layout polygon edges. Finally, the corresponding source 3D
point (x, y, z) from Eq. (6) is projected to the source image
using Eq. (3) to interpolate the color.

Crafting the transformation functions. We can craft
Tv,Th to produce various geometric augmentations. We
summarize the realization of the commonly-used left-right
circular shifting, left-right flip, PanoStretch [8], and the new
camera height adjustment and random layout polygon per-
turbation in Tab. 1. We visualize more augmented views in
Fig. 5.

More qualitative comparison of random perturbation.
In the main paper, we show random perturbation can im-
prove the results when generalizing from a Manhattan-
aligned dataset to a general layout dataset. We show more

Source Camera height adjustment Random perturbation

Figure 5. More visualization of the new data augmentations by LayoutWarp

• Ground-truth • Basic aug. • With rand. perturb.
† The result variations are due to the four different training seeds.

Figure 6. Training with random perturbation generalizes better from Manhattan to general layout. We can observe that the models
trained with random perturbation are less ‘panics’ when the input is not Manhattan-aligned.

visual comparison in Fig. 6.

4. Seg2Reg—more details

We provide more technical details and analyses of the pro-
posed Seg2Reg in this section.

Training details. Our Seg2Reg enables differentiable
layout depth (i.e., distance to layout wall on the floor
plan) rendering from the 2D density map prediction. The
‘flattened’ volume rendering is detailed in the main paper
Sec. 3.1. Directly supervising the rendering by ground-truth
layout depth leads to ambiguity. Recap that the depth ren-

dering equation of a ray is (main paper Eq.(3)):

d =
∑K

i=1
Tiαiti ,where Ti =

∏i−1

j=1
(1− αj) ,

where K is the number of sampled points on the ray. We
can see that there are an infinite number of weight distribu-
tions on the ray that can render to a specific ground-truth
depth d∗. To resolve ambiguity, we directly derive a com-
pact weight distribution w∗ for the ground-truth depth d∗.
Let tk, tk+1 be the two depth values nearest to d∗ on the

ray. Our ground truth weight distribution is:

wk =
tk+1 − d∗

tk+1 − tk
, (9a)

wk+1 = 1− wk , (9b)
wi = 0 ,where i = 1, · · · , k−1, k+2, · · · ,K + 1 .

(9c)

There is a special case when the far clipping distance of the
ray does not reach the layout tK < d∗. In this special case,
the weights are all zero except WK+1 = 1.

To render the primary layout, we directly use the H
2

points in the image column as the sampled points. For the
secondary layouts, we sample N (secondary) = 32 secondary
camera centers. To render layout depth for the secondary
cameras, we uniformly sampled 1,024 points on a ray with
the farthest distance tK = 16 (the camera-to-floor distance
is z(floor) = 1.6). The loss weights for L(pri.), L(2nd), and
L(seg.) are w1 = 1.0, w2 = 0.1, w3 = 1.0, respectively.

Robust polygons merging algorithm. To
merge the primary layout polygon and secondary
layout polygons, the simplest way is to directly
take the polygon union. Such a naive strategy
may have polygon edges crossing the region out-
side the layout where the model actually predicts
high floor plan density (the red polygon in the figure), espe-
cially when the rendered secondary polygons are in lower
resolution (fewer number of vertices). This prompts us to
design a more robust algorithm. Our idea is to connect all
the rendered vertices with the minimum perimeter. We first
compute the pair-wise distance matrix of all the rendered
vertices from primary and secondary views. The pair-wise
distance matrix represents a complete graph. We then con-
struct a minimum spanning tree from the complete graph
via the Kruskal algorithm. The final merged polygon (the
green polygon in the figure) is determined by the trajectory
connecting the farthest two points on the tree, which can be
realized by running the depth-first tree search two times.

We show the results of the two polygon merging methods
and the result after polygon simplification in Tab. 2.

Union MST MST + simplification
87.22% 87.33% 87.13%

Table 2. Results of different polygon merging algorithms. We
report the 2DIoU↑ comparison on MatterportLayout valid set.
Polygon merging via minimum spanning tree (MST) achieves
slightly better results. Applying polygon simplification causes the
number result to drop slightly.

Raw prediction visualizations. In the main paper’s Ta-
ble.3, we show that our Seg2Reg achieves better quan-
titative results than a purely segmentation-based method.
In Fig. 7, we visualize the raw predictions activated by

Seg2Reg

Segmentation

Seg2Reg Segmentation

Figure 7. Visualization of the raw predictions. Segmentation-
only method and our Seg2Reg converge to different results.

Sigmoid. Segmentation-based method only supervises per-
pixel classification. The proposed Seg2Reg introduces
rendering loss, which emphasizes the rendered polygon po-
sition, while the density far outside the layout polygon is
less important as they do not affect the rendering results.

5. Qualitative comparison
We provide an qualitative comparisons in Figs. 8 and 9. We
run LGT-Net’s official repo to show the performance of the
existing state-of-the-art.

• Ground-truth • Seg2Reg • LGT-Net

Figure 8. Qualitative comparisons on the unseen data from
MatterportLayout.

• Ground-truth • Seg2Reg • LGT-Net

Figure 9. Qualitative comparisons on the unseen data from MatterportLayout. We compare it with the state-of-the-art model from
LGT-Net’s official repo. The test set 2DIoU is 83.52% for the official LGT-Net and 85.14% for our model.

References
[1] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.

Le. Randaugment: Practical automated data augmentation
with a reduced search space. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR
Workshops 2020, Seattle, WA, USA, June 14-19, 2020, pages
3008–3017. Computer Vision Foundation / IEEE, 2020. 2

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
770–778. IEEE Computer Society, 2016. 1

[3] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry P. Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. In
Proceedings of the Thirty-Fourth Conference on Uncertainty
in Artificial Intelligence, UAI 2018, Monterey, California,
USA, August 6-10, 2018, pages 876–885. AUAI Press, 2018.
1

[4] Zhigang Jiang, Zhongzheng Xiang, Jinhua Xu, and Ming
Zhao. Lgt-net: Indoor panoramic room layout estimation
with geometry-aware transformer network. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022,
pages 1644–1653. IEEE, 2022. 1, 3

[5] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
2021 IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2021, Montreal, QC, Canada, October 10-17,
2021, pages 9992–10002. IEEE, 2021. 1, 2

[6] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022, pages 11966–11976. IEEE, 2022. 1

[7] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent
neural networks. In IEEE Transactions on Signal Process-
ing, 1997. 1

[8] Cheng Sun, Chi-Wei Hsiao, Min Sun, and Hwann-Tzong
Chen. Horizonnet: Learning room layout with 1d representa-
tion and pano stretch data augmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 1047–1056.
Computer Vision Foundation / IEEE, 2019. 1, 2, 3

[9] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Hohonet:
360 indoor holistic understanding with latent horizontal fea-
tures. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021, pages
2573–2582. Computer Vision Foundation / IEEE, 2021. 1

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pages 5998–6008, 2017. 1

[11] Fu-En Wang, Yu-Hsuan Yeh, Min Sun, Wei-Chen Chiu, and
Yi-Hsuan Tsai. Led2-net: Monocular 360deg layout estima-
tion via differentiable depth rendering. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2021,
virtual, June 19-25, 2021, pages 12956–12965. Computer
Vision Foundation / IEEE, 2021. 1, 3

[12] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep
high-resolution representation learning for visual recogni-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 43(10):3349–
3364, 2021. 1

[13] Chuhang Zou, Jheng-Wei Su, Chi-Han Peng, Alex Col-
burn, Qi Shan, Peter Wonka, Hung-Kuo Chu, and Derek
Hoiem. Manhattan room layout reconstruction from a single
$360ˆ{\circ }$ image: A comparative study of state-of-the-
art methods. Int. J. Comput. Vis., 129(5):1410–1431, 2021.
1

	. Coordinate system
	. Baseline tuning
	. Layout 3D warping—more details
	. Seg2Reg—more details
	. Qualitative comparison

