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1. Additional Results

1.1. Additional Results of NeRF Deformations (Sec-
tion 4.1 in the main paper)

We produced more NeRF deformations, minimizing the
elastic energy of the deformation (Section 4.1 in the main
paper). Results are shown in Figure 1. We also show more
qualitative results on real NeRFs we captured with a smart-
phone in Figure 2.

1.2. Additional Results for Fitting and Learning of
Human Poses (Section 4.2 in the main paper)

More results on the fitting and learning experiments can be
found in Figure 3.

1.3. Multi-view Videos for our NeRF Deformation
Results (Section 4.1 in the main paper)

You can find the videos for 3 NeRF deformations shown in
the main paper in the NeRF_videos.zip.

1.4. Intermediate Deformation Process

We further show the detailed intermediate deformations of
our method (see attached intermediate_deformations.gif).
Our method explicitly deforms the space by composing a
sequence of 2D mesh deformations. The spatial points are
deformed accordingly. By choosing different 3D orienta-
tions, we get our final 3D deformation.

2. Ablation Study

Since our method proposes a new representation, we ab-
late on the main parameters of our model: number of Tutte
layers, and the mesh resolution while performing the fitting
experiment from Section 4.2 - this experiment directly val-
idates the capacity of our representation to fit to deforma-
tions as we modify the ablated parameters. We show results
in Table 1 - we report the vertex and mesh gradient terms
(as in Table 2 in the main paper), both multiplied by 103.

We report average timings at the bottom. As expected, in-
creasing any of these two parameters improves performance
at the price of a slower computation.

The one additional parameter that could be ablated is the
local coordinates R?. We ablate on them by running the
learning experiment (Section 4.2 of the main paper) with
different methods to choose R?. Table 2 shows the results.
We show three variants for plane choices: regular triplane
(alternating between 3 canonical coordinate systems on the
3 main axes); cubic (alternating between 8 vertex direc-
tions); and predicting R? using a neural network. The best
option is to let a neural network control the local coordi-
nates.

Mesh Resolutions 7 11 17 25
Fitting Vert. 022 0.15 0.11 0.09
Fitting Grad. 5.6 44 2.9 2.1
Forward Time 0.088 0.094 0.118 0.166
Jacobian Time 0.02 0.02 0.02 0.02

(a) Ablation study on the Tutte mesh resolutions. We report the Lo and Grad.
errors on the fitting experiment with 8 tri-plane models.

Num of Layers 6 12 24 36
Fitting Vert. 129 024 015 0.12
Fitting Grad. 12.5 6.1 44 32
Forward Time | 0.025 0.048 0.094 0.142
Jacobian Time | 0.005 0.011 0.020 0.029

(b) Ablation study on increasing the number of layers (mesh resoution is fixed

to 11x 11 vertices) We report the Lo and Grad. errors on the fitting experiment
(Table 2 in the main paper).

Table 1. Ablation study on the Tutte mesh resolutions and number
of Tutte layers.

3. Detailed Timing Analysis

We show a detailed timing analysis for our method in Fig-
ure 4. All numbers are averaged on 200 pairs in the fitting
experiments (Section 4.2 in the main paper). With an in-
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Figure 1. Additional elastic deformations of various NeRFs [7] via our representation, as described in Section 4.1 in the main paper.
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Figure 2. Additional elastic deformations of phone-captured NeRFs [7] via our representation.

Triplane Cubic Predicted
Learning Vert. | 0.25  0.21 0.16
Learning Grad.| 8.9 8.4 7.7

Table 2. Ablation on choices of orientations in the learning ex-
periment. In a triplane manner, we alternate orientations among
x,y, z axes. In a cubic manner, we chose the orientations of 8 ver-
tices of the unit cube and alternated among those 8 directions. In
a predicted manner, we use an MLP to predict orientations for all
layers. In this experiment, we use 24 layers with a mesh resolution
11 x 11.

crease of number of Tutte layers, the time increases linearly
as each layer’s computation takes a fixed amount of time.
The 2D mesh resolution, on the other hand, can be increased
while both the Jacobian computation time and the inference
time remain close to constant, as their computation per layer

is not affected by mesh resolution significantly. Of course,
computing the Tutte embedding (solving the linear system
Eq. 3 in the main paper), the inverse time and the back-
propagation time increase as the mesh becomes denser.

4. Limitation: Non-localized Effect of the Tut-
teNet Representation (Section 5 in the main

paper)

As mentioned in Section 5 in the main paper, one limitation
of our method (that all other injective methods share) is that
deforming one part of space may have an effect on another
part, and it is non-trivial to completely localize deforma-
tions to one part of a shape. We show an example of this
issue in Figure 5. On the left, we show the source model
and the constraint (green) dragging the hand to a new po-
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Figure 3. Additional results on the learning (bottom) and fitting (top) human poses experiment (section 4.2).

sition. Second, from left, we show the result of optimizing
for the fitting of the constraint, without applying any regu-
larization to other parts of the shape; the unconstrained part
moves as the changes the TutteNet performs to fit the con-
straint have global effect. Third from the left: once we add
a distortion minimization regularizer to every other part of
the human, the hand goes to place and the entire TutteNet
converges into emulating the deformation which matches
the constraint and minimizes the elastic energy: a global ro-
tation. Right: The result of applying the same constraint,
but regularizing to keep the entire body of the human (blue)
static, allowing only a small potion of the hand to bend.

5. Computation of the Jacobian of the Defor-
mation

The deformation’s Jacobian can be computed in a quick and
straightforward manner. Let p € R?, and define a prismatic
map ®¢ with respect to R?, ¥? as in Section 3.2. Then the

Jacobian of ®? at point p is

Dpd = RIAR (1)

where t is the triangle the point lies in (per Algorithm 1),
~ 0

and Ay = (648 <1)) is the 2D Jacobian of the 2D mesh defor-

mation at point p, lifted to 3D. Finally, the Jacobian of the

map f at point p can be computed by applying the chain
rule to equation (6),

Dy f =L, Dp®". @)
6. Training Details of the Fitting and Learn-
ing Experiments (Section 4.2 in the main
paper)
Choices of Shape Pairs in the Shape Fitting Experiment.
We randomly selected pairs of shapes from the AMASS
training set [6]. In order to focus our fitting experiments
solely on pose changes, we aligned the shape parameters of
the source shapes with those of their corresponding target
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Figure 4. Timing analysis on number of Tutte layers and 2D mesh resolutions. Top: timing w.r.t. number of Tutte layers. Bottom timing

w.r.t. the 2D mesh’s resolutions, with the fixed number of layers as 24.
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Figure 5. Our deformation is not localized: we show the source model and the constraint (green) dragging the hand to a new position.
Second from left, we show the result of optimizing for the fitting of the constraint, without applying any regularization to other parts of the
shape; the unconstrained part moves as the changes the TutteNet performs to fit the constraint have global effect, modifying the deformation
in every part of the space. Third from the left: once we add a distortion minimization regularizer to every other part of the human, the hand
goes to place, and the entire TutteNet converges into emulating the deformation which matches the constraint and minimizes the elastic
energy: a global rotation. Right: The result of applying the same constraint, but while regularizing to keep the entire body of the human

(blue) static, allowing only a small portion of the hand to bend.

shapes. However, this alignment could potentially result in
self-intersections in the source shape due to the modifica-
tion of its parameters. To address this, we excluded pairs
with self-intersecting source shapes and retained 200 pairs
for the evaluation set in our fitting experiment

Dataset Generation of the Learning Experiment. Our
training set for the learning experiment is derived from

the AMASS dataset [6]. Rather than directly utilizing the
training set provided by AMASS, which contains numer-
ous repetitive and closely related poses, we opt to construct
our dataset by randomly sampling from a Gaussian distri-
bution based on the pose and shape distributions observed
in the AMASS dataset. To achieve this, we calculate the
mean (i, ftp) and variance (o, o) for all shape and pose



parameters in the AMASS training dataset. Subsequently,
we sample our dataset’s shape parameters with a mean of
s and a variance of 20, while pose parameters are sam-
pled with a mean of 11, and a variance of 1.50,. Our model
is then trained on this randomly sampled dataset, and its
performance is evaluated on the AMASS validation set.
Network Architecture of the Learning Experiment. The
detailed process of data preparation and the model archi-
tecture are illustrated in Figure 6. For data preparation, we
generate eight depth images for the input shapes and feed
them into the CLIP [9] and DINO-V2 [8] image backbones
to extract image features. These features, along with the
target pose parameters, serve as input for the deformation
model. In the comparisons presented in the main paper, we
consistently set the source pose parameters to the canonical
pose. The source shape parameters and target pose param-
eters are sampled following Section 6. During inference,
the input is not necessarily restricted to the SMPL model.
Instead, we directly take the 3D model as input and render
images onto it. During model forwarding, the image fea-
tures are initially encoded in smaller feature vectors. These
encoded features, along with the target pose parameters, act
as conditioning vectors, guiding the prediction of Tutte pa-
rameters. Three networks are used to predict edge weights,
boundary angles, and plane orientations. The edge MLP
takes the positional encoding of each edge center, along
with the conditioning vectors, as input and outputs the edge
weights for all layers of each edge. Similarly, the boundary
MLP takes the positional encoding of each boundary vertex
position and the conditioning vectors as input, producing
the boundary angle for all layers of each boundary vertex.
The orientation MLP takes only the conditioning vector as
input and outputs the orientations for all layers. In our ex-
periments, we set the number of layers to 24, the resolution
of the mesh to 11 x 11, and the positional encoding fre-
quency to 50. Additional details on channel dimensions can
be found in Figure 6

7. Detailed Baseline Settings

7.1. NeRF Deformation Baselines (Section 4.1 in the
main paper)

* NeRF-Editing [11] We adhere to the procedures outlined
in the official GitHub repository at ht tps://github.
com/IGLICT/NeRF-Editing. Forthe Lego data set,
we utilize the checkpoint and cage data provided by the
manufacturer. In the case of the Trex and Robot datasets,
we follow the instructions on GitHub and receive direct
guidance from the authors to train the model and generate
the cage. During the editing phase, we input their ex-
tracted mesh into our pre-optimized model, incorporating
specified handle constraints to obtain the deformed mesh.
Subsequently, we follow their prescribed steps to achieve

the final rendering results.

* Deforming-nerf [10] We closely follow the procedures
outlined in the official GitHub repository at https:
//github.com/xth430/deforming—nerf. This
method necessitates an initial deformation of the cage
vertices, with subsequent harmonic coordinate interpola-
tion employed to determine the corresponding deformed
positions for ray points. Typically, users manually per-
form the deformation of the cage vertex. However, in
our case, we lack explicit instructions on how to manipu-
late cage vertices to meet handle constraints. Instead, we
employ a different approach. Initially, our pre-optimized
model is used to obtain the deformed positions for the
shape mesh. Leveraging the differentiability of barycen-
tric interpolation, we optimize the cage vertices so that
their interpolation leads to the deformed shape positions.
In this optimization process, we consider the cage ver-
tices as variables subject to optimization. The procedure
takes the undeformed shape points as input, utilizes the
cage vertices to derive the deformed shape points, and op-
timizes the L, loss between the resulting points and the
ground truth (GT) deformed points, those generated by
our deformed model. We sample 10,000 points from the
shape and iteratively optimize the Lo loss until stability is
reached and the loss is lower than 1 x 10~°. For the Lego
and Robot datasets, the author has generously provided
pre-trained models. However, we trained the Trex model
from scratch following the provided instructions.

* SPIDR [5] We adhere to the guidelines presented in
the official GitHub repository available at https: //
github.com/nexuslrf/SPIDR. For elastic defor-
mation, we employ the notebook accessible at this link.
With handle constraints specified, the original method uti-
lizes open3d for mesh deformation, a process that oc-
casionally yields unsatisfactory outcomes due to non-
injectivity issues. To ensure a fair comparison, we sub-
stitute the open3d deformation function with our pre-
optimized model, seamlessly integrating it into the re-
maining steps outlined in their methodology. In partic-
ular, the checkpoints provided are exclusively available
for the Lego and Trex datasets.

7.2. Injective Baselines (Section 4.2 in the main pa-
per)

* i-ResNet [1] We adopt the implementation provided at
https://github.com/stevenygd/NFGP. The
chosen hyperparameters align with the configuration
specified in the deformation settings, available at this link.
Specifically, we configure the model with six layers, a po-
sitional encoding frequency of 5, and a latent dimension
of 256. During the learning experiment, we condition the
generation by appending the conditional feature vector to
the positional encoding.
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Figure 6. Detailed model architecture and data preparation for the learning experiment (Section 4.2 in the main paper).

RealNVP [3] We adopt the implementation available at
https://github.com/ikostrikov/pytorch-
flows and perform a thorough hyperparameter search
to optimize performance. Regarding the mask selection,
given our three-dimensional input and output, we employ
an alternating approach across the three dimensions. This
involves masking out one dimension at a time during each
iteration to facilitate the RealNVP layer forward pass.
Based on the best performance observed and considering
the compatibility with our model size, we set the num-
ber of layers to 6 and the hidden dimension to 32. In the
learning phase, we seamlessly integrate the conditional
input, following the approach outlined in their code.

NeuralODE [2] We align with the implementations avail-
able at https://github.com/hjwdzh/MeshODE
and https : / /github . com/ maxjiang93 /
ShapeF 1ow, both of which utilize NeuralODE for mesh
deformation. To accommodate the size of our model,
we employ four Linear layers with a latent dimension of
120. During the learning experiment, we adhere to the
ShapeFlow [4] configuration, incorporating a conditional
vector for every sample in the ODE function. We set
the absolute and relative tolerance in odeint at 1074,
In the elastic deformation experiment, we leverage the
pytorch gradient function to invoke their built-in Jacobian

computation in the ODE solver. Subsequently, using the
same handle constraints, we perform deformation. To
achieve optimal results and match our model size (24
layers with mesh resolution 25 x 25), we set the latent
dimension to 200 and employ the Adam optimizer for
12,000 steps with a learning rate of 1075.

References

[1] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Du-
venaud, and Jorn-Henrik Jacobsen. Invertible residual net-
works. In International conference on machine learning,
pages 573-582. PMLR, 2019. 5

[2] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equa-
tions. Advances in neural information processing systems,
31,2018. 6

[3] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 6

[4] Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and
Leonidas J Guibas. Shapeflow: Learnable deformation flows
among 3d shapes. Advances in Neural Information Process-
ing Systems, 33:9745-9757, 2020. 6

[5] Ruofan Liang, Jiahao Zhang, Haoda Li, Chen Yang, Yushi
Guan, and Nandita Vijaykumar. Spidr: Sdf-based neural



(6]

(7]

(8]

(9]

(10]

(11]

point fields for illumination and deformation. arXiv preprint
arXiv:2210.08398, 2022. 5

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. AMASS: Archive of
motion capture as surface shapes. In International Confer-
ence on Computer Vision, pages 5442-5451, 2019. 3, 4

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99-106, 2021.
2

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V.
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Rus-
sell Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-
Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nico-
las Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou,
Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bo-
janowski. Dinov2: Learning robust visual features without
supervision, 2023. 5

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748-8763. PMLR, 2021. 5

Tianhan Xu and Tatsuya Harada. Deforming radiance fields
with cages. In ECCV, 2022. 5

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. Nerf-editing: geometry editing of
neural radiance fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18353-18364, 2022. 5



