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Supplementary Material

A. Supplementary Material on Sec 5.6
A.1. Manifold Learning

There are two views of manifold learning, ISOMAP op-
timizes by minimizing the distance vector between the em-
bedding space and the input space, and its procedure can be
written as:

argmin
B

∑
i,j

||distA(Ai, Aj), distB(Bi, Bj)|| (1)

where distA usually stands for a distance metric such as
geodesic distance that conforms to the properties of the un-
derlying manifold in original space A, while distB usually
refers to Euclidean distance in the embedding space B.

Then, LLE works by minimizing the local structure of
the embedding space and the input space:

ES = argmin
ES

N∑
i=1

||Ai −
k∑

j=1

ESi,jAi,j || (2)

Then the embedding space B is obtained by satisfying
the linear reconstruction relation, which means that the LLE
generates a mapping from the original input to embedding
through the geometric local structure:

B = argmin
B

N∑
i=1

||Bi −
K∑
j=1

ESi,jBi,j || (3)

By the comparison of (1) and (4), (2) and (7), it can
be seen that whether explicit local structure is used in the
process of embedding relation vectors is the main differ-
ence between the two methods, so LLE provides some in-
terpretability for the efficient performance of X-3D.

A.2. Manifold in Point Clouds.

Point cloud is typical manifold data, so many works [16,
20, 28, 39, 47, 57]directly apply manifold learning to point
cloud tasks. GP-PCS [28] employs Gaussian processes
suitable for functions defined on Riemannian manifolds to
model the surface on the point cloud. DeepUME [20] di-
rectly uses manifold embedding to complete point cloud
registration. PointManifold [47] decomposes the 3D point
cloud neighborhood into three 2D manifolds and extracts
features separately. Some works [16, 39] believe that it
is more important to use distance embeddings in manifold
space such as geodesic distance instead of Euclidean em-
beddings.

Inspired by these works, we argue that existing works
may learn a mapping from Euclidean embeddings to man-
ifold embeddings by stacking a large number of MLPS,
which is similar to manifold learning. In Figure 1, we com-
pare the similarity between geometric correlations captured
by existing ISHM models and geodesic distances, which
further proves the association of IHSM with ISOMAP.
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Figure 1. We compare the similarity between geometric correla-
tions captured by existing ISHM models and geodesic distances,
and can find that existing works implicitly learn a mapping from
Euclidean embeddings to manifold embeddings and capture local
structure through manifold embeddings. ).

However, from the Figure 1, we can see that even though
the learning difficulty can be reduced by adding additional
surface information, such as RepSurf curvature, etc., due to
the lack of explicit local structure, it is still very difficult
to directly learn the Euclidean embedding to the manifold
embedding (the similarity is only about 84%).

B. Examples of Implict High-dimensional
Structure Modeling

In this section, we will detail some representative works
on implicit high-dimensional structure modeling. There are
mainly two key parts, one is how to construct the relation
vector, and the other is to generate the dynamic embedding
kernel for the relation vector.

PointNet++ [30] and PointMetaBase [22] simply treat
the relative coordinate difference as a relation vector:

Vi,j = pi − pi,j (4)

RandLA [15] additionally introduces absolute coordi-



nates and Euclidean distances:

Vi,j = (pi − pi,j ,pi,pi,j , ||pi − pi,j ||22) (5)

GAM [14] proposes a simplified depth gradient informa-
tion as the relation vector:

pi − pi,j = (
→
xi,j ,

→
yi,j ,

→
zi,j) (6)

Vi,j = (

→
zi,j

||pi − pi,j ||22

→
xi,j +

→
yi,j√

(
→
xi,j)2 + (

→
yi,j)2

, ||pi − pi,j ||22)

(7)
RepSurf [34] is special. Although it captures surface

information at the beginning, as the down-sampling rate be-
comes larger, the point cloud becomes sparse, and the ini-
tial surface information can only describe points, but cannot
characterize the neighborhood structure.

Vi,j = [pi − pi,j , nj , n
T
j pi,j , Si,j ] (8)

where nj represents the normal vector of the j-th point and
Si,j means the coordinate of the j-th point in the spherical
coordinate system with point i as the center.

Then for vector kernel, most methods like Point-
Net++ [30], PointNeXt [33] and so on directly use shared-
weight MLP to implicitly embed the relation vector:

M(Wi,j , fi,j , Vi,j) = MLP (Vi,j , fi,j) (9)

At the same time, there are also many methods such as
PointMetaBase [22], RepSurf [34], etc. that explicitly use
shared-weight MLP to embed relationship vectors:

M(Wi,j , fi,j , Vi,j) = MLP (Vi,j) +MLP (fi,j) (10)

RSConv [23] uses MLP to generate dynamic kernels
based on relation vectors:

Wi,j = MLP (Vi,j) (11)

M(Wi,j , fi,j , Vi,j) = MLP (Wi,j ∗ fi,j) (12)

KPConv [41] dynamically generates kernels based on
geometric relationships between neighborhood points and
predefined kenrel points:

Wi,j =

r∑
k=1

h(pi,j , p̃k)Gk (13)

M(Wi,j , fi,j , Vi,j) = Wi,jfi,j (14)

where p̃k and Gk represent the coordinates and weights of
the k-th predefined kernel points, and r means the number

Algorithm 1 Pytorch-Style Pseudocode of PointHop
# b: batch size, n: number of center points
#k: number of neighbor points, c: feature channels
#p: coordinates of input point cloud (b,n,k,c)
partion_idx=(p[...,0]>0)*4+(p[...,1]>0)*2+(p

[...,2]>0)
centroid=scatter_mean(p,idx=partion_idx)
centroid=concat(centroid,dim=-1)
return centroid

Algorithm 2 Pytorch-Style Pseudocode of Neighborhood
Context Propogation
# b: batch size, n: number of center points
#k: number of neighbor points, c: feature channels
#f: input point cloud
#fps_idx: index of the center points
group_idx=ball query(f) #b,n,k
f=grouping&modeling(f,group_idx) #b,n,k,c
f_0=Maxpooling(f) #b,n,c

f_1=scatter_mean(f.view(b,-1,c),dim=1,index=
group_idx.view(b,-1))

f_1=gather(f_1,fps_idx)

f_2=MLP([f_0,f_1])
return f_2

of kernel points. h represents the geometric distance be-
tween kernel point and neighborhood point.

It can be seen that these methods implicitly capture the
local structure in the high-dimensional space through the re-
lation vector, so they pay more attention to how to construct
a good relation vector Vi,j and how to generate a good vec-
tor kernel Wi,j for the relation vector

C. Implementation of X-3D
In this part, we detail a part of the implementation of

X-3D.
First, we introduce the implementation algorithm of

PointHop which is shown in Algorithm 1, we use the scatter
operator to compute the centroid of each partition.

Then, We detail the specific implementation of neighbor-
hood context propagation which is shown in Algorithm 2.
We use the scatter operator to fuse the features of each point
in different neighborhoods (either as a center point or as a
neighboring point), and then select only the center point’s
fused feature as the propagated feature.

D. Additional Analysis of NCP
In this part, we conduct detailed analysis and ablation

experiments for Neighborhood Context Propagation.
Firstly, from the perspective of computation, NCP sim-

ply uses the overlapping region to propagate context infor-
mation and expand the receptive field, which saves a lot of
computation compared with simply expanding the neigh-
borhood range [18].

Then we compared methods for different propagation
contexts which is shown in Figure 2. After calculating



the features of each point through the attention mecha-
nism, LCPFormer first propagates the context information
through context agg, and then performs local agg to ag-
gregate the features in the neighborhood. RandLA first
performs local agg to extract local features after obtaining
the neighborhood by grouping, and then performs another
grouping to carry out context agg to propagate context in-
formation with the local features obtained in the previous
step. In X-3D, we believe that local agg captures fine local
details, while context agg captures coarse global informa-
tion. In order to balance the role of the two steps, we dis-
card the sequential execution of the two steps, but perform
them in parallel, and fuse the two information through an
adaptive aggregation module.
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Figure 2. We visualize how different methods propagate the neigh-
borhood context. We see that previous methods usually execute
context agg and local agg in a different order or directly expand
the neighborhood to execute both. X-3D executes the two steps
in parallel, which not only preserves the fine local details of the
current region but also fuses the context information

Furthermore, we see that we only propagate the context
information including the center point, which effectively
limits the scope of propagation and avoids conflicts caused
by large differences between local structures in different re-
gions.

Finally, to demonstrate the effectiveness of the above de-
sign, we conduct ablation experiments of NCP on S3DIS
Area5. We see that the parallel local agg and context
agg provide the model with the structure to deal with con-
text flexibly. At the same time, by limiting the propaga-
tion range, the conflict between local structures is avoided,
which effectively improves the performance of NCP

E. Additional Analysis of ES

In this section, we first introduce several explicit local
structures in depth and detail their properties. Then we an-
alyze the reasons for the excellent performance of X-3D in
detail for the viewpoints of ES properties.

Table 1. We tested NCP on S3DIS, where L→C stands for local
agg followed by context agg, L& C stands for performing both
steps in parallel, and Includ-Center stands for propagating only
context information containing the center point

L→ C C→ L L& C Include-Center mIoU

✓ ✓ 71.9
✓ ✓ 71.2

✓ ✓ 70.9
✓ 71.6

E.1. Properties

First we present the implementation of different explicit
local structures:
LR: LLE [36] proposes local linear relations (LR) as ex-
plicit local structures which is shown in (2),
PCA: [6, 19] proposed to obtain an explicit local structural
descriptor by performing pca on the local neighborhood and
combining the eigenvalues and eigenvectors. Specifically,
for eigenvectors (e1,e2,e3) and eigenvalues (λ1,λ2,λ3), we
can describe the overall shape by linear, planar, and scatter:

linear =
λ1 − λ2

λ1
, planar =

λ2 − λ3

λ1
, scatter =

λ3

λ1
(15)

PH: PointHop [51] partitions the point cloud neighborhood
into fixed octets and computes the centroid of each partition.
The process of PH we have described in detail in (8).

Then, we then detail the different properties:
Symmetry: Since the point cloud is unordered, an effective
ES should possess symmetry and not be affected by the or-
der of the point cloud. According to the above formula, we
see that the linear relation ES defined by LLE is obviously
affected by the order of the points, so its property of sym-
metry is missing.
Gloabl Shape: The global shape of a local region describes
the overall shape information, such as sphere, cuboid, etc.,
which provides a good geometric prior for the region cate-
gory. Traditional point cloud analysis methods can usually
identify the object shape information by the main direction
of the data. For example, PCA provides explicit information
about the principal directions directly, whereas PointHop,
like [13], provides the overall principal directions by par-
titioning the regions and computing the centroids of the
regions. However, although LLE explicitly provides the
orientation of all neighborhood points, it is difficult to di-
rectly extract the overall main orientation, so the property
of global shape is missing.
Local Detail: The global shape above provides a simple
geometric prior, but the detailed information inside the lo-
cal region is missing, so we believe that a valid ES should



Table 2. Rich Geometric Information

Method Relative Coordinates Normal Vectors Geodesic Distances

PointNet++ 58% 0.26 0.051
PointMetaBase 63% 0.24 0.038

X-3D 74% 0.16 0.019

also have the property of A. PCA uses three eigenvalues and
eigenvectors to describe the overall shape, but it lacks infor-
mation about the internal neighborhood points, so the local
detail property is missing.

We believe that LR pays more attention to the local in-
formation of each point detail in the local structure, PCA
pays more attention to the global information in the local
structure, and PH is a better balance between the internal
details and the overall shape.

E.2. Reasons

Global Shape provides a good geometric prior for
category learning in local regions. This part has been de-
scribed in detail in the main text.

Local Details provide richer geometric informations.
To demonstrate that local details provide richer geometric
information for each neighborhood point, we design tasks
to predict geodesic distance, normal vector, relative position
which is shown in Table 2 , and the performance of these
tasks demonstrates the richness of geometric information

We predict those geometric metric of neighborhood
points based on the aggregated local structures and neigh-
borhood point features which can be written as follow:

Predict = MLP ([f̂
(2)
i , fi,j ]) (16)

For relative coordinates, direct prediction is difficult, in-
spired by PointRCNN [37], we adopt a bin-based strategy,
that is, the relative coordinates are divided into bins ac-
cording to the maximum and minimum values, and predict
which bin it is in, which turns into a classification task, and
we report the classification accuracy of this task.

Then for normal vectors and geodesic distances, we re-
port its MSE loss directly.

Explicit local structure provides strong robustness. In
Table 3, we report that X-3D is more robust against simple
local transformations (rotation, scale). Inspired by [35],
more powerful data augmentation methods such as cut-
mix can better study the robustness of point cloud models.
Therefore, in this part we use a stronger data augmentation
technique, through PointCutmix [50], to combine different
objects by cutmix opearator to achieve the purpose of dis-
torting and occluding the local structure. In Table 3, we
evaluate PointMetaBase and X-3D on ShapeNetPart using
PointCutMix and report the mIoU under different cutmix
ratioλ. Furthermore, we test two cases. The first one uses

objects of the same category for cutmix to simulate the local
distortion of objects, and the second one uses objects of dif-
ferent categories for cutmix to simulate the occlusion stack-
ing among different objects. Experimental results demon-
strate the robustness of X-3D in the face of various difficult
situations in real scenes

Table 3. Robustness

Method λ=0 λ=0.1 λ=0.2 λ=0.3 λ=0.4

Same Category CutMix

PointMetaBase 86.7 86.5 84.4 82.7 81.2
X-3D 86.9 86.9 86.7 86.0 85.3

Different Category CutMix

PointMetaBase 86.7 70.3 51.6 36.6 27.7
X-3D 86.9 80.1 71.8 59.2 46.1

Table 4. We tested the difference between the implicit local struc-
ture of the feature Spaces at different layers and the explicit space
of the input 3D space on PointMetaBase.

layer1 layer2 layer3 layer4

GAP 1.36 3.23 5.37 7.02

Explicit structure provides 3D geometric information
that is missing from the feature space. Most of the ex-
isting works can be classified as implict high-dimensional
structure modeling, which leads to more and more serious
loss of explicit 3D geometric information with the increas-
ing depth of the model, which is shown in Table 4. There-
fore, by explicitly introducing local structure, X-3D supple-
ments the deep feature space with 3D geometric informa-
tion, which effectively improves the performance


