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1. Detailed explanation of experimental setups
and datasets

The details of the experimental setups are described in Ta-

ble 1. The details of the datasets are described as follows.

• Cityscapes [3] includes images from 50 cities across Ger-

many, captured in both rural and urban environments. It

contains 5,000 images with 2,975 train, 500 validation,

and 1,525 test images with 19 semantic classes.

• ADE20K [10] has images depicting various scenes,

including indoor and outdoor environments. Unlike

datasets focusing on specific domains such as au-

tonomous driving, ADE20K contains diverse scenes such

as bedrooms, offices, parks, and more. It comprises

20,210 train and 2,000 validation images with 150 seman-

tic classes.

• PASCAL-C [5] contains 4,998 train and 5,105 test im-

ages with 59 semantic classes. It also includes both in-

door and outdoor environments.

• COCO-Stuff [2] has 9,000 train and 1,000 test images. It

provides 80 object classes and 91 stuff classes.

• CamVid [1] contains 367 train, 101 validation, and 233

test images with 11 semantic classes.

2. Detailed explanation of metrics for feature-
level analyses

We adopted evaluation metrics from [4], denoted as align-

ment, uniformity, and neighborhood uniformity. The intra-

class alignment, denoted as A, indicates how well the intra-

class features are converged and is defined as follows:

A =
1

N

N∑
i=1

1

|Vi|2
∑

vj ,vk∈Vi

||vj − vk||2, (1)

where N , i, and Vi represent the number of semantic

classes, the i-th semantic class, and the feature set of the
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i-th semantic class, respectively. By doing so, Eq. (1) rep-

resents how closely intra-class features are clustered just be-

fore reaching the segmentation head. Effective clustering of

intra-class features signifies improved discrimination capa-

bilities.

The inter-class uniformity, denoted as U, represents how

well the centers of inter-class features are separated in the

feature space and is defined as follows:

U =
1

N(N − 1)

N∑
i=1

N∑
j=1,j �=i

||μi − μj ||2, (2)

where N and μi represent the number of semantic classes

and center of i-th semantic class, respectively.

Finally, the neighborhood uniformity, denoted as Ul,

measures the separation of l closest center of inter-class fea-

tures. Neighborhood uniformity is defined as follows:

Ul =
1

Nl

N∑
i=1

min
j1,···,jl

(
l∑

j=1,j �=i

||μi − μj ||2
)
. (3)

Both uniformity and neighborhood uniformity imply how

well the model defines the decision boundaries between

inter-class features. As a result, alignment A, uniformity

U, and neighborhood uniformity Ul represent the model’s

ability to distinguish intra-class and inter-class features.

3. Gradients of the loss function
In this section, we prove that harder negative samples in

contrastive learning bring more gradient contribution during

the training procedure. The proposed loss function is as

follows:

Li =
1

N

∑
ân
i ∈Âi

1

|V+|
∑

v+∈V+

La, (4)

La=− log
exp(âni ·v+/τ)

exp(âni ·v+/τ)+
∑

v−∈V−
exp(âni ·v−/τ)

. (5)



Method Training Settings

Model Backbone Crop size Learning rate (Lr) Weight decay Optimizer Lr scheduler Batch size Training steps

DeepLabV3 D-ResNet-101 512 × 1024 10−2 5 × 10−4 SGD Poly 8 40K

HRNet HRNetV2-W48 512 × 1024 10−2 5 × 10−4 SGD Poly 8 40K

OCRNet HRNetV2-W48 512 × 1024 10−2 5 × 10−4 SGD Poly 8 40K
Cityscapes

UPerNet Swin-T 512 × 1024 6 × 10−5 10−2 ADAMW Linear 6 40K

DeepLabV3 D-ResNet-101 360 × 480 2 × 10−2 5 × 10−4 SGD Poly 16 6K

HRNet HRNetV2-W48 360 × 480 2 × 10−2 5 × 10−4 SGD Poly 16 6K

OCRNet HRNetV2-W48 360 × 480 2 × 10−2 5 × 10−4 SGD Poly 16 6K
CamVid

UPerNet Swin-T 360 × 480 6 × 10−5 10−2 ADAMW Linear 16 6K

DeepLabV3 D-ResNet-101 512 × 512 10−2 5 × 10−4 SGD Poly 12 80K

HRNet HRNetV2-W48 512 × 512 10−2 5 × 10−4 SGD Poly 12 80KADE20K

OCRNet HRNetV2-W48 512 × 512 10−2 5 × 10−4 SGD Poly 12 80K

DeepLabV3 D-ResNet-101 512 × 512 10−3 5 × 10−4 SGD Poly 16 60K

HRNet HRNetV2-W48 512 × 512 10−3 5 × 10−4 SGD Poly 16 60KCOCO-Stuff

OCRNet HRNetV2-W48 512 × 512 10−3 5 × 10−4 SGD Poly 16 60K

DeepLabV3 D-ResNet-101 512 × 512 10−3 10−4 SGD Poly 16 60K

HRNet HRNetV2-W48 512 × 512 10−3 10−4 SGD Poly 16 60KPASCAL-C

OCRNet HRNetV2-W48 512 × 512 10−3 10−4 SGD Poly 16 60K

Table 1. Details of the experimental setup for each dataset and semantic segmentation model.

Description Dataset [mIOU(%)]
Method

Loss Sampling Cityscapes CamVid

UPerNet LCE None 78.99 80.85

UPerNet + [6] LCE + Lcms + Lccs Random 78.90 (-0.09) 80.69 (-0.16)

UPerNet + Ours LCE + LPA (Ours) Boundary-aware (Ours) 79.98 (+0.99) 80.88 (+0.03)

Table 2. Quantitative results on CamVid and Cityscapes compared with baseline model and with multi/cross-scale contrastive learning.

Then, the derivative of Li with respect to the anchor âni
is obtained as follows:

∂Li

∂âni
=

−1

τN |V+|
∑

ân
i ∈Âi

∑
v+∈V+

(
(1−p+)·v+−

∑
v−∈V−

p−·v−
)
,

(6)

where p+/− =
exp(ân

i ·v+/−/τ)
∑

v∈V

exp(ân
i ·v/τ) denotes a matching prob-

ability between anchor and samples. Thus, once we sam-

ple harder negative samples by our BANE sampling, the

dot product between anchor ani and negative sample v− is

close to 1. Thus, the matching probability of negative p−
is increased. As a result, the gradient of the loss function is

increased when the negative samples are harder.

4. Additional quantitative results

In this section, we demonstrate more quantitative results

with transformer-based semantic segmentation model on

Cityscapes and CamVid datasets. As shown in Tables 2

and 3, our Contextrast also improves segmentation per-

formance compared with the baseline model [8] and with

multi/cross-scale contrastive learning [6]. Contextrast

aligns intra-class features and separates inter-class features

better than baseline model and multi/cross-scale contrastive

learning, as shown in Table 4.

Classes Categories
Method

mIOU (%) iIOU (%) mIOU (%) iIOU (%)

UPerNet 78.71 56.82 90.54 79.24

79.00 57.57 90.79 79.45
UPerNet + [6]

(+0.29) (+0.75) (+0.25) (+0.21)

79.51 58.12 90.66 79.48UPerNet + Ours
(+0.80) (+1.30) (+0.12) (+0.24)

Table 3. Quantitative segmentation results on Cityscapes-test.

Method A ↓ U ↑ U3 ↑ U5 ↑
UPerNet 0.83 1.39 0.73 0.82

0.70 1.48 0.77 0.87UPerNet + [6]
(-0.13) (+0.09) (+0.04) (+0.05)

0.65 1.49 0.79 0.89C
it

y
sc

ap
es

UPerNet + Ours
(-0.18) (+0.10) (+0.06) (+0.07)

UPerNet 0.78 2.24 1.17 1.37

0.69 2.30 1.23 1.43UPerNet + [6]
(-0.09) (+0.06) (+0.06) (+0.06)

0.65 2.34 1.27 1.47C
am

V
id

UPerNet + Ours
(-0.13) (+0.10) (+0.10) (+0.10)

Table 4. Feature-level quantitative analysis of intra-class align-

ment (A), inter-class uniformity (U), and the l-closest neighbor-

hood uniformity (Ul) on Cityscapes and CamVid datasets with

UPerNet.



OCRNet OCRNet + [6] OCRNet + OursGround truth

Figure 1. Qualitative results from OCRNet, OCRNet + [6], and OCRNet + Ours on CamVid (best viewed on color).

5. Additional qualitative results

This section demonstrates more qualitative comparisons

between the baseline model, multi/cross-scale contrastive

learning [6], and Contextrast. Fig. 1 demonstrates quali-

tative results with OCRNet [9] on CamVid. In addition,

Fig. 2 shows more qualitative comparisons with OCRNet

on Cityscapes, ADE20K, and COCO-Stuff. Finally, quali-

tative results for transformer-based semantic segmentation

are shown in Fig. 3. We observed that Contextrast shows

better semantic segmentation results with OCRNet and even

better results with the transformer.
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Figure 2. Qualitative results from OCRNet, OCRNet + [6], and OCRNet + Ours on Cityscapes, ADE20K, and COCO-Stuff datasets (best

viewed on color).



UPerNet UPerNet + [6] UPerNet + OursGround truth

Figure 3. Qualitative results from UPerNet, UPerNet + [6], and UPerNet + Ours on Cityscapes (best viewed on color).

6. Qualitative comparisons for feature-level
analyses

This section demonstrates additional feature-level analy-

ses with qualitative results. We visualized the gradient-

weighted class activation mapping (Grad-CAM), feature

maps of the last layer, and t-distributed stochastic neigh-

bor embedding (t-SNE). Grad-CAM highlights important

regions in the image for prediction, as shown in Fig. 4,

which demonstrates Grad-CAM for bicycle, bus, car, mo-

torcycle, person, pole, and rider classes on Cityscapes. As

illustrated in Fig. 4, Contextrast focuses more on the cor-

rect regions and does not focus on the unlabeled regions,

i.e. poles.

The feature map of the last layer, which is just before the

segmentation head, is illustrated as Fig. 5. The feature of the

baseline model has less context information and too many

fine details that are likely to be noisy, which causes over-

segmentation problems. The feature of the multi/cross-scale

contrastive learning method has too few fine details, which

causes under-segmentation problems. In contrast, our pro-

posed method balances both fine details and global context

in feature maps, so Contextrast achieved better semantic

segmentation performances.

Figs. 6 and 7 demonstrate features learned with baseline

model and Contextrast by t-SNE. Each class label is col-

ored differently. Contextrast better aligns intra-class fea-

tures and separates inter-class features in each layer com-

pared with the baseline semantic segmentation model in the

feature space, as shown in Figs. 6 and 7.
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Figure 4. Grad-CAM results from HRNet, HRNet + [6], and HRNet + Ours on the Cityscapes dataset (best viewed on color).



HRNet HRNet + [6] HRNet + OursGround truth

Figure 5. Feature map of the last layer from HRNet, HRNet + [6], and HRNet + Ours on the Cityscapes dataset (best viewed on color).



(a)

(b)

Figure 6. Visualization of features learned with HRNet [7] and Contextrast on CamVid. Each class label is colored differently. (a) t-SNE

results of the baseline model. (b) t-SNE results of Contextrast. Note that the distributions of features corresponding to each class become

more distinguishable (best viewed in color).

(a)

(b)

Figure 7. Visualization of features learned with HRNet [7] and Contextrast on Cityscapes. Each class label is colored differently. (a) t-SNE

results of the baseline model. (b) t-SNE results of Contextrast. Note that the distributions of features corresponding to each class become

more distinguishable (best viewed in color).



Dataset [mIOU (%)]
Representative anchor Â

Cityscapes CamVid

Lowest layer 81.29 83.33

Highest layer (Ours) 82.20 (+0.91) 84.33 (+1.00)

Table 5. Ablation study: performance variation according to the

selection of representative anchor Â which is shared in each layer.

Contextrast shares the highest representative anchor. To test the

performance variation depending on the selection of the represen-

tative anchor Â, we have experimented with the case sharing the

lowest representative anchor in each layer.

7. Additional ablation study

In this section, we demonstrate two ablation studies.

First, Table 5 presents the rationale why Contextrast shares

the representative anchor of the highest-level features in-

stead of the representative anchor of the lowest-level fea-

tures. When the representative anchor is set as the lowest

layer, higher-level features are aligned based on the char-

acteristics of fine details and features in that layer. Thus,

it loses global context information in higher-level features.

On the other hand, the proposed method shares the global

context information, so lower-level features are aligned

based on the characteristics of the global context and fea-

tures in that layer. Thus, it maintains global context infor-

mation in all layers. Table 5 demonstrates that our pro-

posed method comprehends global contexts in all layers,

thus achieving better semantic segmentation performances.

Second, as shown in Table 6, we explain why Contex-

trast uses the representative anchor information in all lay-

ers. When the representative anchor information was used

in partial layers, it showed worse semantic segmentation

performance than the proposed method that utilized the rep-

resentative anchor information in all layers. Therefore, the

representative anchor of the highest layer should be shared

in all layers to align features consistently with global con-

text information.

Third, Table 7 demonstrates that the proposed contrastive

learning method slightly increases complexity and memory

cost during the training phase. However, our approach does

not impose additional burdens during inference, aligning

with our objective for efficiency.

Lastly, we identified the optimal λi with various combi-

nations of hyperparameters as detailed in Table 8a. Upon

optimizing λi, we adjusted α to balance the scale between

cross-entropy loss and PA loss as shown in Table 8b. De-

spite non-optimized hyperparameters, our method’s perfor-

mance surpassed that of state-of-the-art methods, achieving

an 83.14 mIoU, as shown in Table 1 in our manuscript, ex-

cept for one experiment that mostly utilizes low-level fea-

tures as demonstrated in the fifth-row of Table 8a.

Layer 4 Layer 3 Layer 2 Layer 1 mIOU (%)

� 81.15 (-1.05)

� � 81.14 (-1.06)

� � � 81.52 (-0.68)

C
it

y
sc

ap
es

� � � � 82.20 (Ours)
� 83.42 (-0.91)

� � 83.13 (-1.20)

� � � 83.17 (-1.16)

C
am

V
id

� � � � 84.33 (Ours)

Table 6. Ablation study: performance according to the layers that

utilize the representative anchor of the last layer. Our proposed

method demonstrates the best semantic segmentation performance

with HRNet [7].

Baseline Contextrast Increase rate (%)

Params (M) 70.01 70.39 +0.54
FLOPs (G) 1295.86 1300.13 +0.33

Training time (sec/epoch) 352.53 415.63 +17.90

Table 7. Computational complexity and memory usage in the

training phase.

λ4→1 mIoU

1.0 1.0 1.0 1.0 83.63
1.0 0.8 0.6 0.4 83.53
1.0 0.75 0.5 0.25 83.35
1.0 0.7 0.4 0.1 84.33
0.1 0.4 0.7 1.0 82.92
0.25 0.5 0.75 1.0 83.42
0.4 0.6 0.8 1.0 83.53

(a)

α mIoU

0.1 84.33
0.2 83.75
0.3 83.59
0.4 83.31
0.5 83.25

(b)

Table 8. Comparison with different hyperparameter settings with

CamVid dataset.

8. Limitation Analysis
This paper proposed Contextrast, which utilizes represen-

tative anchors in a hierarchical structure. Thus, it enables

sharing the global context of high-level features in each

layer. It mostly achieved state-of-the-art performance on

public datasets, but the improvements are not as large in

COCO-Stuff [2] and PASCAL-C [5] as in CamVid [1],

Cityscapes [3], and ADE20K [10]. We believe that there is

a limitation in having generalized representative anchors in

the last layer because some datasets have so many different

classes in the scene; Contextrast only has limited features

for each class with a limited training batch size. In the fu-

ture, we plan to research further on how to generalize the

representative anchor in many datasets without increasing

training batch size.
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