
Splatter Image: Ultra-Fast Single-View 3D Reconstruction

Supplementary Material

PSNR " SSIM " LPIPS #
Full model 24.11 0.92 0.087
w/o cross-view attn 23.68 0.92 0.091
w/o cam embed 23.91 0.92 0.088
w/o warping 23.84 0.92 0.088

Table 8. Ablations: Multi-View Reconstruction.

A. Additional results
Additional qualitative results Our project website con-
tains a short summary of Splatter Image, videos of compar-
isons of our method to baselines and additional results from
our method on the 4 object classes and the 2 multi-class
datasets. Moreover, we present static comparisons of our
method to PixelNeRF [55] and VisionNeRF on ShapeNet-
SRN Cars and Chairs in Fig. 8, as well as static comparisons
of our method to PixelNeRF on CO3D Hydrants and Ted-
dybears in Fig. 9. In Fig. 10 we present additional static
comparisons of our method to OpenLRM on the Google
Scanned Objects dataset.

Multi-view model ablation. Table 8 ablates the multi-
view model. We individually remove the multi-view atten-
tion blocks, the camera embedding and the warping com-
ponent of the multi-view model and find that they all are
important to achieve the final performance.

B. Data details
B.1. ShapeNet-SRN Cars and Chairs
We follow standard protocol in the ShapeNet-SRN datasets.
We use the images, camera intrinsics, camera poses and data
splits as provided by the dataset [45] at 128 ⇥ 128 resolu-
tion and train our method using relative camera poses: the
reconstruction is done in the view space of the condition-
ing camera. For single-view reconstruction, we use view 64
as the conditioning view and in two-view reconstruction we
use views 64 and 128 as conditioning. All other available
views are used as target views in which we compute novel
view synthesis merics.

B.2. CO3D
We use the first frame as input and all other frames as tar-
get frames. We use all testing sequences in the Hydrant and
Teddybear classes where the first conditioning frame has a
valid foreground mask (with probability p > 0.8). In prac-
tice, this means evaluating on 49 ‘Hydrant’ and 93 ‘Teddy-

bear’ sequences.

Image center-cropping. Similarly to recent methods [4,
49] we take the largest crop in the original images centered
on the principal point and resize to 128 ⇥ 128 resolution
with Lanczos interpolation. Similarly to many single- and
few-view reconstruction methods [24, 55, 59] we also re-
move backgrounds. We adjust the focal length accordingly
with the resulting transformations. This is the only pre-
processing we do – CO3D objects already have their point
clouds normalised to zero-mean and unit variance.

Predicting Gaussian positions. Estimating the distance
between the object and the camera from visual information
alone is a challenging problem in this dataset: focal lengths
vary between and within sequences, objects are partially
cropped, and global scene parameters such as distance to
the object, camera trajectory and the angle at which objects
are viewed all vary, posing a challenge to both our and base-
line methods. Thus, for both PixelNeRF and our method we
set the center of prediction to the center of the object.

In our method we achieve this by setting znear = zgt � w
and zfar = zgt + w, where zgt is the ground truth distance
from the object to the source camera and w is a fixed scalar
w = 2.0. In PixelNeRF, we provide the network with x =
xv � zgt where x is the sample location at which we query
the network and xv is the sample location in camera view
space. zgt is computed as the perpendicular distance (along
camera z-axis) to the world origin, which coincides with the
center of the point cloud in CO3D.

B.3. Multi-class ShapeNet.
Identically to prior work, we use images, splits and camera
parameters from NMR [21] which provides 64 ⇥ 64 ren-
ders from cameras at fixed elevations. For direct compar-
ison with prior work [26, 55] we use the same source and
target views for evaluation.

B.4. Objaverse and GSO data details.
We use renders from Zero-1-to-3 [29], filtered by the ob-
jects which appear in the LVIS subset to use only high-
quality assets. The data is rendered at 512⇥ 512 resolution
with focal length 560px with cameras pointing at the cen-
ter of the object at randomly sampled distances. We resize
data to 128⇥128 resolution with Lanczos interpolation, ad-
justing the focal length accordingly. At training and testing
time we rescale the ground truth camera positions so that
the distance from the object to the camera is a fixed scalar
d = 2. GSO renders provided by Free3D [57] were ren-
dered with the same parameters (resolution, distances, fo-



Input PixelNeRF 
0.54FPS

Ours 
588FPS

GTVisionNeRF 
0.41FPS

Figure 8. ShapeNet-SRN. Our method (fourth column) outputs reconstructions which are better than PixelNeRF (second column) and
more or equally accurate than VisionNeRF (third column) while rendering 3 orders of magnitude faster (rendering speed in Frames Per
Second denoted underneath method name).



Input PixelNeRF 
0.54FPS

Ours 
588FPS

GT

Figure 9. CO3D. Our method (third column) outputs reconstructions which are sharper than PixelNeRF (second column) while rendering
3 orders of magnitude faster (rendering speed in Frames Per Second denoted underneath method name).



Input OpenLRM 
Training: 
384GPUh

Ours 
Training: 
7GPUh

GT

Figure 10. Google Scanned Objects. Our method (third column) outputs reconstructions which are comparable in quality to OpenLRM
(second column) while requiring ⇥50 less resources to train.



cal length) and we apply the same resolution scaling, focal
length adjustment and camera scale adjustment at evalua-
tion time.

C. Implementation details.
C.1. Splatter Image training.
We train our model (based on SongUNet [46]) with L2 re-
construction loss (Eq.4 main paper) on 3 unseen views and
the conditioning view for 800,000 iterations. We use the
network implementation from [20]. For single-class mod-
els, we use the Adam optimizer [23] with learning rate
5⇥ 10�5 and batch size 8. For multi-class ShapeNet model
we use the same learning rate and batch size 32. Batch sizes
are mainly dictated by GPU memory limits. For rasteriza-
tion, we use the Gaussian Splatting implementation of [22].
After 800,000 iterations we decrease the learning rate by a
factor of 10 and train for a further 100,000 (Cars, Hydrants,
Teddybears), 150,000 (multi-class ShapeNet) or 200,000
(Chairs) iterations with the loss L = (1� ↵)L2 + ↵LLPIPS
and ↵ = 0.01. Training done is on a single NVIDIA A6000
GPU and takes around 7 days.

Large dataset training. Training on Objaverse is done
with Mixed Precision and effective batch size 32. We train
first for 350, 000 iterations with learning rate 5⇥ 10�5 and
↵ = 0, followed by 40, 000 iterations with learning rate
6.3 ⇥ 10�5 and ↵ = 0.338. Training takes place on two
NVIDIA A6000 GPUs for around 3.5 days.

Regularizers. For CO3D we additionally use regularisa-
tion losses to prevent exceedingly large or vanishingly small
Gaussians for numerical stability. We regularize large
Gaussians with the mean of their activated scale s = exp ŝ
when it is bigger than a threshold scale sbig = 20.

Lbig = (
P

i
si (si > sbig))/(

P
i

(si > sbig)).
Small Gaussians are regularized with a mean of their

negative deactivated scale ŝ when it is smaller than a
threshold ŝsmall = �5: Lsmall = (

P
i
�ŝi (ŝi <

ŝsmal l))/(
P

i
(ŝi < ŝsmall)).

Ablations. Due to computational costs, ablation models
are trained at a shorter schedule 100k iterations with L2 and
further 25k with L2 and LLPIPS with ↵ = 0.1.

C.2. PixelNeRF.
For ShapeNet (single-class and multi-class) we use the
scores reported in the original paper [55], as we train and
evaluate on the same data. For training on CO3D, we use
the official PixelNeRF implementation [55]. We use the
same preprocessed data as for our method. We modify the
activation function of opacity from ReLU to Softplus with
the � parameter � = 3.0 for improved training stability.
Parametrization of the sampling points to be centered about
the ground truth distance to the camera zgt as discussed

Method GPU Memory # GPUs Days GPU ⇥ Days

VisionNeRF A100 80G 16 5 80
NeRFDiff A100 80G 16* 3 48
ViewDiff A40 48G 2 3 6

PixelNeRF TiRTX 24G 1 6 6

Ours - small scale A6000 48G 1 7 7

LRM / OpenLRM* A100 40G 128 3 384
Ours - Objaverse A6000 48G 2 3.5 7

Table 9. Training resources. Ours, Viewset Diffusion and Pix-
elNeRF have significantly lower compute costs than VisionNeRF
and NeRFDiff. Our method is ⇥50 cheaper to train than LRM.
Memory denotes the memory capacity of the GPU. * denotes esti-
mates.

in Appendix B.2 is available as default in the official im-
plementation. As in original work, we train for 400, 000
iterations.

C.3. OpenLRM.
OpenLRM was trained assuming distance to the object
d = 1.9 and field-of-view FOV = 40�. To match this,
we rescale the ground truth cameras so that the source cam-
era was at distance d = 1.9 from the object. For exact
comparison we use the same data for the baselines as for
our method. For a fair comparison, we pass the 128 ⇥ 128
image as an input and render novel views at 128⇥ 128 too.
Through experimentation we found that the best quantita-
tive results were achieved by assuming the same field-of-
view as at training time FOV = 40�.

D. Training resource estimate
We compare the compute resources needed at training time
by noting the GPU used, its capacity, the number of GPUs
and the number of days needed for training in Tab. 9. We
report the compute resources reported in original works,
where available. NeRFDiff only reports the resources
needed to train their ‘Base’ models and the authors did not
respond to our clarification emails about their ‘Large’ mod-
els which we compare against in the main paper. We thus
report an estimate of such resources which we obtained by
multiplying the number of GPUs used in the ‘Base’ mod-
els by a factor of 2. Our method is significantly cheaper
than VisionNeRF and NeRFDiff. The resources required
are similar to those of Viewset Diffusion and PixelNeRF,
while we achieve better performance and do not require ab-
solute camera poses. The difference between our method
and prior works is even more striking on large datasets like
Objaverse, where our method is ⇥50 cheaper than LRM.

E. Covariance warping implementation
As described in Sec. 3.4 in the main paper, the 3D Gaus-
sians are warped from one view’s reference frame to another



with ⌃̃ = R⌃R> where R is the relative rotation matrix of
the reference frame transformation. The covariance is pre-
dicted using a 3-dimensional scale and quaternion rotation
so that ⌃ = RqSR>

q
where S = diag (exp(ŝ))2. Thus the

warping is applied by applying rotation matrix R to the ori-
entation of the Gaussian R̃q = RRq . In practice this is im-
plemented in the quaternion space with the composition of
the predicted quaternion q and the quaternion representation
of the relative rotation p = m2q(R) where m2q denotes the
matrix-to-quaternion transformation, resulting in q̃ = pq.


