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Model ResShift [63] DDColor [22] OVSeg [28]

Feature Prediction 3.121 12.282 10.117
Feature Interpolation

w/o Inconsistency Correction 0.042 7.491 0.375
w/ Inconsistency Correction

Single Stage 0.0395 3.39 0.371

Ours 0.021 3.240 0.370

Table 3. Ablation study of several components of Lift3D on lifting
three unseen 2D feature encoders to 3D. The indent indicates the
studied setting is added upon the upper-level ones.

(a) Single Stage (b) Two Stage

Figure 8. Qualitative comparison on the open vocabulary segmenta-
tion task between a Single Stage and Two Stage feature correction
pipeline.

A. Ablation Studies
We primarily ablate on the following key design considera-
tions of our method.
Feature Prediction. Inspired by [61], we propose a
baseline that directly predicts the target view feature and
color. To do so, we leverage a powerful generalizable NVS
method GNT [50], and add an additional feature head that is
supervised by the 2D vision model.
w/o Inconsistency Correction. Next, We remove the
inconsistency correction module on the source view fea-
tures and simply share the aggregation weights between
the epipolar RGB features and similarly constructed epipo-
lar projections on the encoder features from the 2D vision
model.
Single Stage. Lastly, we convert our two-stage pipeline
into a “one-stage” feature correction pipeline using the ran-
domly sampled points along the ray (in contrast to our two-
stage, density proposal followed by feature propagation only
on the importance-sampled points).

We report performance on the above investigations in
Table 3, specifically the mean squared error distance between
the estimated feature and ground truth feature obtained by
naively encoding the target view using the 2D vision model
(or Gtarget). We follow the training strategy discussed in Sec.
5.1 i.e. trained on DINO and CLIP features and evaluated
on unseen 2D vision models - ResShift [63], DDColor [22],
and OVSeg [28].

A straightforward extension of [61], that directly pre-
dicts the target view feature cannot generalize to unseen
feature encoders resulting in a very high error rate. Instead,

2D DINO 3D ”Lifted” Dino

N.A. 3 views 6 views 10 views

0.39 / 0.90 / 0.36 0.76 / 0.97 / 0.76 0.80 / 0.98 / 0.80 0.82 / 0.98 / 0.83

Table 4. Effect of the number of input views for semantic segmen-
tation of scenes. Metrics are ordered as IoU / Acc / mAP (higher is
better)

our method uses a feature interpolation strategy that derives
consistency information from RGB to rectify and propagate
inconsistent feature maps. We verify that our inconsistency
correction module on the source view features {Gi}Ni=1 is
essential and ensures better blending of feature maps. This
becomes even more apparent in the case of severely view-
inconsistent input features, e.g. in the case of the colorization
task (DDColor [22]). Finally, our method is two-stage i.e.
derives a coarse density proposal and performs corrective
feature aggregation only on the importance-sampled points.
This is necessary and leads to slight deviations in the esti-
mated novel view feature otherwise (and even worse decoded
outputs, see Fig. 8).

B. Computational Efficiency
Naively applying a 2D vision model on each rendered view
yields multi-view inconsistent predictions and can be quite
inefficient. On the other hand, our method Lift3D uses the
2D vision model to encode only the training views (can
be pre-computed) and relies on nearest source views when
estimating the features from arbitrary viewing angles, that
are further decoded to obtain the desired output. This is
significantly efficient and faster especially when perform-
ing the downstream task from a large number of arbitrary
viewpoints.

Formally, let’s assume the time to encode, decode, and
render each view as tenc, tdec, trend respectively. To per-
form the desired task on 100 rendered views, the 2D baseline
would roughly take time t2D = 100×(trend+tenc+tdec). As-
suming we have around 15 training views for each scene, the
time taken by Lift3D t3D = 15× (tenc)+100× (trend + tdec).
We can clearly see that t3D < t2D, and the difference is quite
significant in the case of lifting diffusion features like In-
structPix2Pix [3] that requires a time-consuming multistep
denoising process during encoding i.e. tenc ≫ tdec. There-
fore, when performing downstream tasks on several arbitrary
viewing angles, our method also boasts of superior efficiency
along with multi-view consistency when compared to its cor-
responding 2D counterpart.

C. Limitations
We acknowledge that an interpolation technique like ours
from input views does result in some loss in quality, ar-
guably not very significant. However, in several practical



Method Text-Image Direction Similarity ↑ Direction Consistency ↑
InstructNeRF2NeRF [17] 0.180 0.966
Ours 0.193 0.982

Table 5. Quantitative results for text-guided scene editing.

applications multi-view consistent outputs are usually even
more desirable, and even mild deviations from the current
viewpoint yield significantly different outputs when naively
applying a 2D vision model (see Figures 1, 6, 7, 9). Al-
though our method successfully lifts many 2D features to be
multi-view consistent, its potential remains capped by the
epipolar-based rendering. For example, our method may not
handle sparse 360-degree scenes or objects with complex
light transport where epipolar geometry no longer holds and
drops in performance with limited number of input views
(see Table 4). Interesting future directions include scaling
up training of Lift3D to unbounded scenes [8] or combining
extant pre-trained 3D models with 2D models.

D. Gallery of Tasks
In Fig. 9, we qualitatively compare the decoded outputs
using our 3D lifted features against the original 2D opera-
tion on two views and across different tasks. We can clearly
see that our method yields multi-view consistent predic-
tions, unlike the 2D operator. In some cases, we even see
that our method yields improved predictions perhaps due
to multi-view information. For example in Figs. 9k and
9k, we can see that our method is able to segment the hair
dryer along with its cable as per the input prompt “hair
dryer with cable”. Similarly in Figs. 9n and 9o, in the
case of super-resolution, we see that our lifted features pre-
serve the original scene geometry with higher detail, unlike
its 2D counterpart. For the sake of completeness, we also
provide quantitative results for 3D scene editing in Table
5. Following the evaluation protocol in [17], we compute
the text-image direction similarity and consistency scores
across 6 scenes and report average metrics. Our method
outperforms the SOTA scene-specific 3D editing technique
InstructNeRF2NeRF [17], both in terms of editing quality
and multi-view consistency. Fig. 9 only represents a few
tasks and in practice, our method can be extended to any 2D
vision operator without any extra tuning.
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Figure 9. Qualitative comparisons of the 3D “Lifted” features against its corresponding 2D counterpart on two different views and across
several tasks. We observe that our 3D-corrected features are more multi-view consistent and sometimes even improve prediction quality. For
clearer comparison between the 2D and 3D outcomes, we recommend zooming into the electronic version of this image.
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