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7. More Experiments
7.1. Qualitative Evaluation
We show multiple qualitative samples generated by our
model in Figures 7 and 8, where we use our head detector
to localize people. We can see that Sharingan performs well
in different challenging situations and for all people in the
scene (not only the annotated ones, which are often easier
and in the foreground). This includes cases that

• Require depth reasoning (e.g. Figure 7 rows 3, 5, 7)

• Require understanding gestures (e.g. Figure 8 row 6)

• Have unusual camera angles (e.g. Figure 8 row 1)

• Involve complex social interactions (e.g. Figure 7 rows
2, 3, 4, and 6)

• Feature people seen from behind, where the face and
the eyes are not visible (e.g. Figure 8 rows 1, 2, 5, 6)

The model is also able to capture social gaze behavior
such as looking at people (e.g. Figure 8 rows 3, 5, and 7),
and shared attention (e.g. Figure 7 rows 3 and 7). Finally,
the heatmaps produced by our model successfully highlight
other possible gaze targets in case of uncertainty (e.g. Fig-
ure 7 rows 2, 7 and Figure 8 rows 2, 5, 6).

Furthermore, we provide several examples of failure
cases in Figure 9. We note that the model can fail at times
in the presence of uncertainty: even if the heatmap captures
the plausible targets, the argmax might land on the wrong
one (e.g. row 4). The model also seems to struggle with
some unusual head poses and appearances. In row 2 for ex-
ample, the gaze encoder only sees the hair from the top of
the head, making it challenging to discern the body’s orien-
tation. In such cases, the predicted gaze vector is inaccu-
rate, and so is the final prediction. This is also reflected in
the heatmap which extends across half of the image. We be-
lieve that having access to the entire body pose of the person
might prove useful in handling these situations. Moreover,
the model might fail when the gaze target is completely oc-
cluded (e.g. row 5). This problem probably comes from the
datasets themselves where annotated instances often corre-
spond to visible targets. The authors of [35] proposed a
gaze class to extend the traditional in-vs-out label, which
incorporates a gaze occluded option. Having this prediction
can help the user disregard these gaze instances, or deal with
them separately (similar to the case when the person is look-
ing outside the frame). Finally, Sharingan might fail when
the gaze target selection requires complex reasoning, like

Method AUC " Avg. D. # Min. D. #

Supervised 0.931 0.121 0.065
CLIP 0.923 0.139 0.080
MAE 0.931 0.109 0.056

MultiMAE 0.944 0.113 0.057

Table 6. Ablation results for the ViT pretraining.

when one person gazes at a distant object being pointed at
by another person (e.g. row 3).

7.2. ViT Pretraining

Given the limited size of the available benchmarks, all gaze
following methods resort to pretraining instead of random
initialization. In this section, we take a closer look at
the influence of the pretraining strategy on the final per-
formance of Sharingan. To this end, we compare differ-
ent ViT initializations: 1. ImageNet-1k Supervised fine-
tuning, 2. CLIP pretraining, 3. ImageNet-1k MAE, and
4. ImageNet-1k Multimodal MAE. The results are shown
in Table 6. As expected, supervised classification doesn’t
translate as well to our dense prediction task compared to
masked auto-encoding. Surprisingly, CLIP performs even
worse. While the semantic information is useful to the task,
we believe that the shortcoming of CLIP stems from its
image-level representation while gaze following requires an
object-level finer-grained understanding of the image. We
also note that masked auto-encoding performs better over-
all, with the standard image-based MAE slightly outper-
forming its multimodal counterpart. However, MultiMAE
seems to generalize better as evidenced by a cross-dataset
evaluation on VideoAttentionTarget where we get a distance
of 0.113 (MultiMAE) vs 0.117 (MAE).

7.3. Robustness to Inaccurate Head Boxes

As a two-stage approach, Sharingan requires access to head
bounding boxes as input, typically obtained using off-the-
shelf head detectors. However, the predicted head locations
are naturally prone to inaccuracies. This raises the ques-
tion of the model’s robustness when provided with noisy
head labels. To evaluate this aspect, we conducted an ex-
periment where we jittered each head box coordinate in the
test set of GazeFollow with uniform noise in [�↵,↵] such
that ↵ = �.wbox and �.hbox for xi and yi respectively. We
find that the Avg. Dist. (averaged over multiple runs) for
� 2 {10%, 20%, 30%} only increased by 0.2%, 1.4%, and



Figure 7. Predictions of Sharingan on the VideoAttentionTarget and (test set of) GazeFollow datasets. The first column is the image,
the second shows point predictions of all people, and the third is the heatmap of a randomly selected person. The model is trained on
GazeFollow.



Figure 8. Predictions of Sharingan on the ChildPlay dataset. The first column is the image, the second shows point predictions of all
people, and the third is the heatmap of a randomly selected person. The model is trained on GazeFollow.



Figure 9. Failure cases of Sharingan on the ChildPlay dataset. The first column is the image, the second shows point predictions of all
people, and the third displays the heatmap of the person with an incorrect prediction. The model is trained on GazeFollow.
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Figure 10. Comparative analysis of FLOPS vs number of people.

Method Dist. #

Random 0.442
Chong [7] 0.138

Sharingan 0.124

Table 7. Cross-dataset performance on the DL Gaze dataset.

5.0% respectively. One important reason behind this robust-
ness is our use of random noise to jitter head bounding box
coordinates as a form of data augmentation during training.

7.4. Revisiting Model Efficiency
To further support our claim of efficiency, we provide a fair
flops comparison with [7, 38] in Figure 10. Specifically, the
flops count includes the head detection step for our model
and [7], but not the depth extraction of [38]. We are bet-
ter than [38] when Np <= 10, and better than [7] when
Np >= 5.

7.5. Generalization
To assess the generalization robustness of our model, we
tested it on other datasets and tasks related to gaze.

7.5.1 Gaze Following

First, we evaluate Sharingan (pretrained on GazeFollow)
on the DL Gaze dataset [21], which records 16 volun-
teers performing several activities (e.g. talk, read, use a
mobile phone) in 4 different indoor scenes (i.e. laboratory,
working office, library, and corridor). The dataset contains
5526 frames annotated with 9481 gaze following instances.
The images are generally very different from the ones in
GazeFollow, and we use the distance metric for evaluation.
The results, which are shown in Table 7, demonstrate our
model’s ability to generalize to other contexts.

7.5.2 Shared Attention

Next, we assess Sharingan’s performance when the pre-
dicted heatmaps are processed to infer shared attention.
To this end, we consider the test set of the VideoCoAtt

dataset [10]. It contains 114100 test frames, 18101 (16%)
of which contain shared attention instances. For each im-
age, we predict the heatmaps of all people (i.e. annotated
and automatically detected) and add them together. This
image-based shared attention heatmap is used to evaluate
two tasks: shared attention detection and shared attention
localization.

For shared attention detection, the goal is to determine
whether there is a shared attention instance happening in
the frame. To do so, we simply find the maximum intensity
value and consider it a positive prediction when it is above a
certain threshold. The rationale is that if two or more people
are looking at the same area, their cumulated heatmaps will
result in a large peak. Since the heatmaps have a maximum
value of 1, a perfectly predicted shared attention between
2 people means a maximum value of 2. In practice, it will
be less than 2 because the points of maximum intensity of
the two heatmaps will not perfectly align. Consequently, we
report precision, recall, and f-score at a threshold of 1.6. We
also vary the threshold between 1 and 2 to compute both the
AUC and AP.

In terms of localization, the goal is to assess the distance
between the predicted shared attention point (i.e. argmax
of the shared attention heatmap), and the ground truth (i.e.
the center point of the annotated shared attention bounding
box). In this case, we only consider the 18101 frames with a
shared attention instance and use the standard distance met-
ric computed at the original image resolution.

The results of this experiment are given in Table 8.
Sharingan outperforms [7] on both tasks and all metrics ex-
cept precision. Indeed, the model from [7] delivers slightly
higher precision but performs significantly worse in terms
of recall (i.e. 23-point difference).

Please note that a similar experiment was done in [7, 39],
but we were not able to reproduce their results since the per-
formance depends on the heads considered (i.e. [7] trained
their own SSD head detector, and [39] predict both heads
and gaze with their unified method). For a fair comparison,
we tested both [7] and Sharingan using the same protocol
outlined before. Unfortunately, the code and checkpoints
from [39] are not available. Also, we chose to use AP, AUC,
and F-score to evaluate shared attention detection because
the dataset is heavily imbalanced (16-84 split) which makes
the accuracy metric, as reported in [7, 39], not a suitable
choice.

7.5.3 Mutual Gaze

Finally, we test the ability of our gaze following model to
recognize mutual gaze behavior, i.e. whether two people are
looking at each other. To this end, we use the test set of
the UCO-LAEO dataset [25] which contains 2366 frames
annotated with people’s head bounding boxes and mutual



Method Precision@1.6 " Recall@1.6 " F-score@1.6 " AP " AUC " Dist. #

Random — — — — — 186
Bias — — — — — 108

Chong [7] 54.50 19.88 29.14 36.35 72.73 68

Sharingan 49.16 43.56 46.19 42.96 81.20 55

Table 8. Performance on the VideoCoAtt dataset for shared attention.

Method Precision " Recall " F-score "

Random 45.76 49.90 47.74
Chong [7] 75.31 84.95 79.84

Sharingan 78.45 92.23 84.79

Table 9. Performance on the UCO-LAEO dataset for mutual gaze.

gaze instances. We predict gaze points for all annotated
people in an image and consider pairwise instances between
them. A predicted instance is considered positive if the gaze
point of each person falls within the head bounding box of
the other. We report the precision, recall, and f-score in
Table 9. Once again, Sharingan outperforms the baselines
by a significant margin across all metrics thereby marking
its superiority.

Beyond the numbers, these experiments also serve to
prove that Sharingan can be used to infer social gaze be-
havior simply by processing its output heatmaps according
to the task. The qualitative results shown before also sup-
port this finding.

8. Discussion: One-Stage vs Two-Stage
Most previous works in gaze following solve the task us-
ing a two-stage approach where the first step is to detect
people’s heads and use them as input alongside the im-
age to predict their gaze. Recently, authors from [39] and
[38] attempted a one-stage end-to-end approach where the
model takes only the image as input and regresses both peo-
ple’s head bounding boxes and their gaze heatmaps (among
other things). The authors claim that this formulation is
better, using efficiency and robustness as their main argu-
ments. Aside from the difficulty of evaluating such methods
through available benchmarks, we argue that multi-person
two-stage approaches are more advantageous. First, we be-
lieve that person head detection is a solved task, so attempt-
ing to learn this is nothing short of reinventing the wheel.
Incidentally, we found the head detector used in this pa-
per to be extremely accurate, robust, and, even suitable for
real-time applications (Yolo family). The only instances it
seemed to miss were small background heads in low-quality

images and uncommon head poses (e.g. child lying on the
ground). Second, real-world gaze applications are often part
of a larger system to analyze people’s behaviors. For exam-
ple, in the context of social robots interacting with individ-
uals, people are typically already detected and tracked. The
ability to exert control over the selection and presentation
of subjects to the gaze model simplifies subsequent analysis
and processing. In contrast, one-stage gaze methods require
a matching step that is prone to errors and adds computa-
tion overhead. Moreover, implementations such as [38, 39]
come with a hyperparameter for the maximum number of
people they can handle, with a need for re-training to mod-
ify [39]. Instead, Sharingan can effortlessly accommodate
a variable number of people without any changes. Finally,
Sharingan is much easier and faster to train (i.e. 20 epochs
on a single GPU for ⇠10 hours vs 80 epochs on 8 GPUs for
[39]).
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