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A. Overview
• Goal. The primary goal of this paper is to highlight the

importance of constructing a hierarchy of embeddings
that can be autodidactically learned from anatomy and
that can enhance the generalizability and robustness of
representation learning.

• Hypothesis. We hypothesize that if deep neural networks
can comprehend images akin to human perception—
parsing them into part-whole hierarchies [12–14]—their
learned features would exhibit increased generalizability,
robustness, and interpretability.

• Challenge. While deep neural networks excel in learning
multi-level feature spaces, their limitation often lies in the
absence of explicit coding for part-whole hierarchies, hin-
dering a nuanced understanding of hierarchical relation-
ships among objects and their constituent parts [12, 21].

• Solution. We propose a novel self-supervised learn-
ing framework–called Adam-v2–that, without requir-
ing anatomy labeling, explicitly incorporates part-
whole hierarchies into its learning objectives through
three key branches—localizability, composability, and
decomposability—in order to preserve a semantic balance
of anatomical diversity and harmony in its learned embed-
ding space (§2).

• Contributions. In addition to higher generalizability and
transferability of our Adam-v2’s learned representations
(Fig. 7 and Tab. 2), our Adam-v2 proves to be an ef-
fective few-shot learner, making it a potent pretraining
model for segmentation tasks with a scarcity of annota-
tions (Tab. 1 and 4). Furthermore, we present a compre-
hensive set of quantitative and qualitative feature analyses
that offer new perspectives for assessing anatomy under-
standing from various viewpoints (§4.1).

• Relation to GLOM. Hinton recently introduced the idea
of “GLOM” [12], aiming to signify the importance of ex-
plicitly presenting part-whole hierarchies in a neural net-

work. Inspired by the conceptual idea beneath GLOM,
we propose Adam-v2 which is fundamentally different
from GLOM in several key aspects. Firstly, GLOM is
an imaginary system without practical experimentation,
whereas the Adam-v2 is a functioning system rigorously
evaluated across 10 tasks in diverse settings. Secondly,
GLOM is an idea for developing an ideal architecture
for constructing hierarchical representations. However,
our Adam-v2 offers a functional framework that takes a
step towards achieving the overarching goal shared with
GLOM—interpreting images as part-whole hierarchies
akin to human vision systems—through a simple yet ef-
fective learning strategy that does not rely on labeled
data. A recent line of research works has attempted to im-
plement GLOM, such as [8, 28]. However, our work di-
verges from this line of research in that Adam–v2 encodes
the semantics of part-whole hierarchies into the embed-
ding space through training with three explicit objectives:
localizability, composability, and decomposability.

B. Additional Results
B.1. Few-shot Transfer in Fundus Imaging Tasks

To underscore the effectiveness of our SSL framework in
learning robust representations for few-shot segmentation
tasks, we replicate the experiments reported in Tab. 1 within
few-shot transfer settings for fundus applications. To do so,
we fine-tune our Adam–v2 model and baseline models, all
of which were pretrained on fundus images from the Eye-
PACS dataset, using a limited number of labeled samples
(3-shot, 6-shot, and 12-shot) from the DRIVE and Drishti-
GS datasets. As seen in Tab. 4, Adam–v2 exhibits supe-
rior few-shot transfer performance when compared to SSL
methods in retinal vessel segmentation and optic disk seg-
mentation tasks on the DRIVE and Drishti-GS datasets, re-
spectively. Notably, when compared to the runner-up base-
line, Adam–v2 achieves improvements of 5.92%, 4.25%,
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Method DRIVE (Dice%)
3-shot 6-shot 12-shot Full-shot

DINO [5] 68.96 71.49 72.73 78.36
DenseCL [33] 67.99 70.65 72.83 78.36
DiRA [11] 68.13 70.80 72.88 78.52
Adam–v2 (Ours) 74.87 75.74 76.27 79.91
∆ +5.92 +4.25 +3.39 +1.39

Method Drishti-GS (Dice%)
3-shot 6-shot 12-shot Full-shot

DINO [5] 85.29 92.36 93.95 96.44
DenseCL [33] 85.42 92.51 94.10 96.60
DiRA [11] 86.42 92.81 94.14 96.76
Adam–v2 (Ours) 94.00 94.97 96.20 97.02
∆ +7.57 +2.16 +2.07 +0.26

Table 4. Adam–v2 demonstrates superior performance in few-shot
transfer within the fundus modality, surpassing SOTA SSL meth-
ods by a large margin in the retinal vessel and optic disk segmen-
tation tasks on the DRIVE and Drishti-GS datasets, respectively.
Remarkably, with only 3 shots, Adam–v2 achieves 94% and 97%
of its full training data performance in retinal vessel and optic
disk segmentation tasks, respectively. ∆ shows Adam–v2’s per-
formance boosts compared with second-best method (underlined).
All methods are pretrained on Eye-PACS dataset.

and 3.39% in 3-shot, 6-shot, and 12-shot scenarios for the
retinal vessel segmentation task, and 7.57%, 2.16%, and
2.07% for the optic disk segmentation task. With only 3
shots, Adam–v2 achieves 94% and 97% of its full training
data performance in retinal vessel and optic disk segmenta-
tion tasks, respectively.

B.2. Weakly-supervised Disease Localization

We explore the effectiveness of our Adam–v2 in localizing
chest pathology in a weakly supervised setting. To do so,
we follow [32, 34] and leverage the ChestX-ray14 dataset,
which comprises 787 cases annotated with bounding boxes
for eight thorax diseases: Atelectasis, Cardiomegaly, Effu-
sion, Infiltrate, Mass, Nodule, Pneumonia, and Pneumotho-
rax. During the training phase, we initialize target models
with our Adam–v2 and other baselines pretrained weights
and fine-tune them using only image-level disease labels.
In the testing phase, we employ Grad-CAM [9] to visualize
image regions responsible for the model predictions, specif-
ically identifying the diseased regions. As seen in Fig. 9,
Adam–v2 localizes diseases more accurately compared to
other baselines. Notably, the heatmaps generated by our
Adam–v2 exhibit a higher degree of concentration around
disease regions in comparison to other baselines, with its
attention maps displaying a more pronounced overlap with
the ground truth across all diseases. This generation of more

interpretable activation maps not only highlights the Adam–
v2’s potential for precise disease localization but also shows
its potential for clinical utility in post-hoc interpretation by
radiologists.

B.3. Anatomy Matching

To further illustrate Adam–v2’s capability in anatomy un-
derstanding, we examine Adam–v2’s representations for
anatomical landmark matching in a zero-shot setting. To do
so, from a given query image, we randomly select Nq = 13
anatomical landmark points and extract a patch of size
962 centered at each anatomical landmark point. These
patches are resized to 2242 and passed through Adam–v2’s
pretrained backbone to generate query embeddings Eq =

{Ei
q}

Nq

i=1. Then, for an unlabeled key image, we extract Nk

patches by sliding a window of size 962 with a stride of
16. After resizing these key patches to 2242, their embed-
dings Ek = {Ej

k}
Nk
j=1 are obtained using Adam–v2’s pre-

trained backbone. Finally, for each query anatomical land-
mark embedding in Eq , we compute its ℓ2-distance with all
embeddings in Ek and identify the center of the patch cor-
responding to the embeddings with the minimum distance
as the matched point for the anatomical landmark.

To showcase the robustness of Adam–v2’s representa-
tions to anatomical variations, we explore three distinct set-
tings involving anatomical point matching across images of
the same patient with different diseases, images of different
patients, and augmented views of the same image. Fig. 10
depicts the query image annotated with 13 landmark points
(red circles) and corresponding matched points (indicated
by yellow crosses) across different diseases, patients, and
views. To assess the accuracy of matched points, we in-
clude the ground truth landmark points provided by human
experts for key images (depicted as red circles). As shown
in Figure 10, Adam–v2 showcases its potential in precisely
identifying similar anatomical landmarks, aligning with our
findings in Sec. 4.1 and emphasizing the semantic rich-
ness inherent in Adam–v2’s representations. These findings
underscore an additional emergent property of our Adam–
v2, revealing its potential in identifying corresponding land-
marks. It is crucial to emphasize that our primary focus in
this study is to acquire generalizable and semantically rich
representations through our proposed SSL learning strategy.
For an in-depth exploration of Adam–v2’s potential in land-
mark detection and image registration—topics beyond the
scope of this paper—a more detailed investigation is war-
ranted, which we defer to future work.

C. Downstream Tasks
We extensively evaluate the transferability of Adam–v2 pre-
trained models across a broad spectrum of 10 downstream
tasks on nine publicly available datasets of chest X-ray and
fundus modalities. These tasks assess the generalizability
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Figure 9. [Better viewed on-line, in color, and zoomed in for details] Visualization of Grad-CAM heatmaps generated by Adam–v2
and baseline methods for eight diseases in ChestX-ray14. Ground truth is marked with white boxes. Adam–v2 yields finer localization
outcomes compared to baselines, which either concentrate on broader image regions or miss alignment with the ground truth.

Adam–v2’s representations across various applications (bi-
nary classification, multi-label classification, organ/lesion
segmentation), diseases (tuberculosis, pneumothorax, lung
nodules, etc), anatomical structures (heart, clavicle, ribs,
vessels, optic disk), and modalities (chest radiography and
fundus photography). In the following, we elaborate on the
specifics of downstream tasks incorporated in this paper.

Task 1: Clavicle segmentation. This task entails pixel-
level segmentation of the left and right clavicles. We use
the Japanese Society of Radiological Technology (JSRT)
dataset [25, 30], comprising 247 posterior-anterior chest ra-
diographs with associated segmentation masks for clavicles.
The dataset was divided into two folds, containing 124 and
123 images, respectively. We adhere to the official patient-
wise data split, utilizing fold-1 for training and fold-2 for
testing. We use mean Dice score as the evaluation metric
for assessing clavicle segmentation performance.

Task 2: Heart segmentation. This task encompasses
pixel-level segmentation of the heart. We use JSRT

dataset [25, 30] for this task, comprising 247 images with
associated segmentation masks for heart. We adhere to the
official patient-wise data split, utilizing fold-1 (124 images)
for training and fold-2 (123 images) for testing. We use
mean Dice score as the evaluation metric for assessing heart
segmentation performance.

Task 3: Ribs segmentation. This task entails pixel-level
segmentation of individual ribs. We utilize the VinDr-Rib
dataset [22], comprising 245 chest radiographs accompa-
nied by segmentation masks for 20 individual anterior and
posterior ribs (10 on each side of the lungs). Following the
official dataset split, we use 196 images for training and 49
for testing. This task is formulated as a multi-class segmen-
tation problem, and the performance is evaluated using the
mean Dice score.

Task 4: Thoracic diseases segmentation. This task in-
volves pixel-level segmentation of thoracic diseases using
ChestX-Det dataset [20]. The dataset comprises 3,578 chest
X-ray images. Board-certified radiologists have provided



Query Key 1: Cross disease Key 2: Cross patient Key 3: Cross view
Right Clavicle Left Clavicle

Right Hemidiaphragm Left Hemidiaphragm

Aortic Arch
Azygos Arch

Pulmonary Artery
Right Hilum

Left ventricle border

Rib 4

Rib 7

Rib 5

Rib 8

Figure 10. [Better viewed on-line, in color, and zoomed in for details] Adam–v2 shows its potential in identifying similar anatomical
landmarks across three distinct settings: anatomical point matching across images of the same patient with different diseases, images of
different patients, and augmented views of the same image. The images are from the test set of the ChestX-ray14 dataset. The red circles
represent the ground truth for 13 distinct landmark points in query and key images, while the yellow crosses indicate the corresponding
matched points identified by our Adam–v2.

segmentation masks for 13 common thoracic conditions,
including atelectasis, calcification, cardiomegaly, consoli-
dation, diffuse nodule, effusion, emphysema, fibrosis, frac-
ture, mass, nodule, pleural thickening, and pneumothorax.
We adhere to the official dataset split, using 3,025 images
for training and 553 images for testing.

Task 5: Pneumothorax segmentation. This task focuses
on pixel-level segmentation of pneumothorax disease. We
utilize the SIIM-ACR dataset [35], consisting of 10,000
chest radiographs along with segmentation masks for pneu-
mothorax disease, if present in an image. For training
and testing, we randomly divide the dataset into 8,000 and
2,000 images, respectively. Segmentation performance is
assessed using the mean Dice score.

Task 6: Common thoracic diseases classification. This
task involves multi-label classification of five common tho-
racic diseases. We use VinDR-CXR dataset [23] that pro-
vides 18,000 posterior-anterior chest radiographs, along
with image-level labels provided by expert radiologists for 6
conditions: lung tumor, pneumonia, tuberculosis, other dis-
eases, COPD, and No finding. Following the official dataset
split, we allocate 15,000 images for training and 3,000 for
testing, and evaluate classification performance using the
mean AUC score.

Task 7: Tuberculosis classification. This task involves de-
tection of tuberculosis disease. We use NIH Shenzhen CXR
dataset [17], including 662 chest radiographs, with 326 im-
ages categorized as normal and 336 images representing pa-
tients with tuberculosis. We randomly split the dataset into
training (80%) and testing (20%) sets, and evaluate perfor-
mance using the AUC metric.

Task 8: Thoracic diseases classification. This task encom-
passes multi-label classification of fourteen thoracic dis-
eases, employing the ChestX-ray14 dataset [32] curated by

the National Institutes of Health Clinical Center, USA. The
dataset comprises 112,120 de-identified X-rays from 30,805
unique patients, with labels indicating the absence or pres-
ence of 14 thoracic disease categories. We adhere to the
official patient-wise split provided by the dataset, allocat-
ing 86K images for training and 25K for testing, and assess
classification performance using the mean AUC over the 14
diseases.

Task 9: Retinal vessel segmentation. This task encom-
passes pixel-level segmentation of retinal vessels. We use
DRIVE dataset [4], including 40 color fundus images along
with expert annotations for retinal vessels. Following the
official dataset split, we use 20 images for training and 20
for testing, and evaluate segmentation performance using
the mean Dice score.

Task 10: Optic disk segmentation. This task involves
pixel-level segmentation of optic disk. We use Drishti-GS
dataset [26], encompassing 101 fundus images, divided into
50 training and 51 testing images. Ground truth segmenta-
tion masks are provided for optic disk by human experts.
We adhere to the official dataset split and assess segmenta-
tion performance using the mean Dice score.

D. Implementation Details
D.1. Pretraining Setup

Our SSL framework is architecture-neutral and compati-
ble with any ConvNet and vision transformer backbones.
We have trained two Adam–v2 models with ResNet-50
backbone using unlabeled images from the training sets of
ChestX-ray14 [32] and EyePACS [7] datasets for chest X-
ray and fundus imaging tasks, respectively. Moreover, we
have trained Adam–v2 with ViT-S backbone using unla-
beled images from the training sets of ChestX-ray14 and



CheXpert [16] datasets. Additionally, to demonstrate the
scalability of our framework, we have trained a large-
scale Adam–v2 model with ConvNeXt-B backbone us-
ing a large corpus of 926K chest X-ray images collected
from 13 publicly-available datasets, including ChestX-
ray14, CheXpert [16], VinDr-CXR [23], NIH Shenzhen
CXR [17], RSNA Pneumonia Detection Challenge [27],
MIMIC-CXR [18], PadChest [2], COVID-19 Radiography
Database [6], Indiana ChestX-ray [1], Mendeley-V2 [19],
COVIDx [31], JSRT [30], and NIH Montgomery [17]. Fol-
lowing [5], the localizability heads hθLS

and hθLT
consist of

a 3-layer multi-layer perceptron (MLP) with hidden dimen-
sion 2048 and output dimension K = 65536. The compos-
ability (hθC ) and decomposability (hθD ) heads are 2-layer
MLP with hidden dimension 2048. We use AdamW opti-
mizer, and follow [5] in learning rate scheduler and weight
decay settings. To empower the model with hierarchical
anatomy learning, we train Adam–v2 in a coarse-to-fine
manner, incorporating diverse anatomical structures at vari-
ous scales. Starting with m = 0, where the model is trained
on the entire anatomy (whole images), we progressively
reduce the scale of anatomical structures by factors based
on powers of 2. Specifically, for input images with spatial
resolution (H×W ), we randomly sample anatomical struc-
tures with resolutions of ( H

2m ×
W
2m ), where m ∈ {1, 2, ...},

and utilize them as inputs to the model during the pre-
training process. For learning anatomical structures at each
scale, the model is trained with the objective function in
Eq. (5). In practice, we assess anatomical structure reso-
lutions across up to 4 scales (i.e., m ∈ {0, .., 3}), but our
ablation study (see Fig. 8) suggests that up to three lev-
els are sufficient to yield robust representations. During the
training, the parameters of the teacher network and localiz-
ability head hθLT

are updated with an exponential moving
average on the weights of the student network and hθLS

,
respectively; the update rules are θT ← λθT + (1 − λ)θS
and θLT ← λθLT + (1− λ)θLS , where λ follows a cosine
schedule from 0.996 to 1 during training [10]. Following
[5], we use centering and sharpening for the teacher’s out-
puts to avoid collapsing solutions for localizability learn-
ing. In the localizability branch, we extract one global crop
of size 2242 from the input w, along with eight multi-scale
crops of size 962. The temperature τs is set to 0.1, and
τt follows a linear warm-up as [5]. We train ResNet-50
model from scratch with a batch size 512 distributed across
8 Nvidia V100-32Gb GPUs. We first warm up the local-
izability branch with a scheme as [5] (200/200/100 epochs
for m = 0, 1, 2), empowering the model with an initial abil-
ity to discriminate different anatomical structures. Subse-
quently, the composability and decomposability losses are
integrated into the training process, and the entire frame-
work is jointly trained (10/90/165 epochs for m = 0, 1, 2).
We initialize the ConvNeXt-B model with ImageNet-22K

pretrained weights, and train it with a batch size 160. We
first warm up the localizability branch (70/70/30 epochs for
m = 0, 1, 2), and then train the model with all three losses
(10/50/30 epochs for m = 0, 1, 2).

D.2. Downstream Setup

Evaluations. We utilize the pretrained teacher backbone
of Adam–v2 (i.e., gθT ) for zero-shot, few-shot, and full
transfer evaluations. We use Adam–v2 with ResNet-50
backbone in zero-shot, few-shot, and full transfer evalua-
tions. We use Adam–v2 model with ConvNeXt backbone
for comparison with large-scale medical models in public
ChestX-ray14 benchmark. We use Adam–v2 with ViT-S
backbone for co-segment visualizations (Fig. 1), and follow
the settings of [3] to co-segment the common chest anatom-
ical structures.
Fine-tuning settings. For transfer learning to segmenta-
tion tasks, we employ a U-Net architecture [24], initializ-
ing the encoder weights with Adam–v2’s pretrained back-
bone. For transfer learning to classification tasks, we take
Adam–v2’s pretrained backbone and append a fully con-
nected layer to generate the desired classification outputs.
Following the standard evaluation protocol [15, 29], we per-
form end-to-end fine-tuning for all parameters of the tar-
get models across all downstream tasks. We strive to opti-
mize each downstream task with the most effective hyper-
parameters. In classification tasks, we use AdamW opti-
mizer with learning rate 2.5e−4 decayed by a cosine sched-
ule, weight decay 0.05, (β1, β2) = (0.9, 0.95), and standard
data augmentation, encompassing random crop, flip, and ro-
tation. In segmentation tasks, we use Adam optimizer with
learning rate 1e − 3 for VinDR-Ribs, DRIVE, and Drishti-
GS datasets, and AdamW optimizer with a learning rate
2e − 4 for the rest of the tasks, cosine learning rate decay
scheduler, and standard data augmentation, encompassing
random crop, brightness contrast, grid and optical distor-
tion, elastic transformation, gamma. Moreover, we employ
early-stopping using 10% of the training data as the valida-
tion set. We use input size 5122 for DRIVE and 2242 for all
other tasks. We follow [15] for ChestX-ray14 dataset. Clas-
sification and segmentation performances are measured by
the AUC (area under the ROC curve), and mean Dice co-
efficient metrics and IoU (Intersection over Union) metrics,
respectively.
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