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1. Experimental settings

1.1. Synthetic data: Cem Yuksel’s hair models [16]

We used wStraight, wCurly, and wWavy models, all of
which have 50,000 strands. The head model, accompanied
by the hair models, was attached for rendering by Blender
Cycles. A white uniform environment map was used for
illumination. Camera parameters were set the same as the
real studio data discussed later.

1.2. Real data

H3DS [11]

H3DS is a real-world multi-view dataset for head recon-
struction. GT Head meshes were scanned by a laser scanner,
and independently captured multi-view images surrounding
the subject in 360° were registrated against the mesh. About
70 images are provided per subject. Top views are not well
captured in both the mesh and the images. Moreover, some
views are affected by strong flash lighting that deteriorates
image quality. For NeuralHaircut, by following the official
implementation setting, 32 clean views manually annotated
by the dataset authors were used. For the other methods, all
views were inputted.

Monocular hand-held video [14]

A subject asked to be as static as possible on a chair was
captured in circular motion by a smartphone. Subsampled
60 frames are provided. Camera parameters were estimated
with COLMAP [13].

Studio data

Original 58 images were captured in 1824x2736 pixels by
DSLRs with hardware synchronized shooting. The cameras
were evenly put on a hemisphere, and similarly positioned
LEDs were illuminated for uniform lighting. Camera pa-
rameters and a raw mesh were estimated by MetaShape [2].

The images were resized to a height of 684 pixels for LP-
MVS and Strand Integration and 512 pixels for NeuralHair-
cut and ours.

1.3. Existing methods’ settings

LPMVS [9] and Strand Integration [8]

Default values were used for most parameters. Reasonable
values were set to scene-dependent minimum and maxi-
mum depth according to the distance between the camera
and the subjects.

NeuralHaircut [14]

We followed the instructions to run the official implemen-
tation, including some manual processes. 50,000 strands
were sampled for visualization and quantitative evaluation
while 1,900 strands were used for training as in the default
setting.

2. Additional Results
We show additional results on synthetic and real data.

2.1. Additional comparison and ablations on syn-
thetic data

Qualitative comparison with existing methods is shown in
the upper rows of Figure 1 and Figure 2. These results cor-
respond to the quantitative comparison in the main paper,
Table 2. The frontal scalp alignment of NeuralHaircut is
not accurate, and for Straight Hair, NeuralHaircut confuses
hair with the head. The results of LPMVS and Strand Inte-
gration are almost similar, showing many short strands, in-
consistent 3D orientation, and no distinction between head
and hair. Our full pipeline shows better precision for both
cases.

The lower rows of Figure 1 and Figure 2 visualize the
ablation study. Even in w/o DR, the outline is well esti-
mated, but it leaves room for improvement in fine details.
In w/o guide opt., child strands become too smoother. In



GT LPMVS Strand Integration NeuralHaircut Ours

w/o DR w/o guide opt. w/o reparam. w/o N w/o strand init. w/o global opt.
Figure 1. Qualitative evaluation on synthetic Straight Hair, corresponding to Table 2 of the main paper and Table 1 of this material. Four
views per method are displayed with different strand visualization: Blender Cycles shading, 3D orientation, and random color. The upper
row shows a comparison with existing methods, and the lower row displays the ablation study.
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w/o DR w/o guide opt. w/o reparam. w/o N w/o strand init. w/o global opt.
Figure 2. Qualitative evaluation on synthetic Curly Hair, corresponding to Table 2 of the main paper and Table 1 of this material. Four
views per method are displayed with different strand visualization: Blender Cycles shading, 3D orientation, and random color. The upper
row shows a comparison with existing methods, and the lower row displays the ablation study.



Figure 3. Additional results on synthetic Wavy hair with different colors. From top to bottom, black, blue, brown, gold, gray, and red
colors are tested. From right to left, top view GT, top view guide with 3D orientation, top view child with 3D orientation, side view GT,
side view guide with random color, and side view child with random color are shown. The results are almost same and accurate, which
indicate our method is less sensitive to the color of the input hairs.



Table 1. Quantitative comparison with existing methods and ablation study on synthetic data tolerating 180° ambiguity, which have been
used in the previous studies. P, R, and F1 denote precision, recall, and F1 score, respectively. Higher is better. The lower rows describe
the values of our full pipeline and ours without individual modules. w/o DR: DR optimization is not applied, and the initialized strands are
evaluated. w/o guide opt.: Child strands are optimized from the beginning of the DR step. w/o reparam.: Reparameterization is disabled.
w/o N : Only N is abandoned in the reparameterization. w/o strand init.: Strands are initialized by straight lines parallel to the normal of
the scalp. w/o global opt.: Only gravity heuristic is applied to the initial 3D orientation, and 180° ambiguity is accepted on the other steps.

Straight Hair Curly Hair
Threshold 1mm/10° 2mm/20° 3mm/30° 1mm/10° 2mm/20° 3mm/30°

Measure P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
LPMVS [9] 61.0 37.1 46.1 81.1 62.8 70.8 87.5 76.0 81.4 36.9 8.1 13.3 65.6 18.6 28.9 74.0 28.1 40.7
Strand Integration [8] 68.3 42.0 52.0 86.9 62.2 72.5 91.6 72.6 81.0 38.7 8.8 14.3 68.2 18.8 29.4 76.2 26.6 39.4
NeuralHaircut [14] 50.3 15.0 23.1 76.4 29.3 42.4 85.9 38.6 53.3 21.0 3.9 6.6 58.6 14.7 23.6 80.8 28.1 41.7
Ours 60.3 46.4 52.5 88.2 84.3 86.2 94.5 93.6 94.1 38.4 23.6 29.2 79.2 61.1 69.0 90.1 81.2 85.4
Ours (w/o DR) 65.4 41.8 51.0 88.6 78.8 83.4 93.3 88.6 90.9 22.3 15.9 18.6 60.0 56.8 58.4 77.5 83.0 80.1
Ours (w/o guide opt.) 61.1 46.8 53.0 86.8 86.1 86.5 92.7 95.0 93.9 36.9 22.9 28.3 77.5 60.7 68.1 88.8 81.0 84.7
Ours (w/o reparam.) 8.2 43.2 13.8 24.9 97.4 39.7 40.5 99.9 57.6 8.1 33.5 13.1 30.1 95.5 45.8 52.1 99.9 68.5
Ours (w/o N ) 59.5 46.9 52.5 86.6 85.4 86.0 92.8 94.3 93.5 36.5 23.2 28.4 76.4 60.8 67.7 87.6 80.9 84.1
Ours (w/o strand init.) 5.6 1.0 1.7 24.3 7.1 11.0 40.2 19.1 25.8 10.1 5.1 6.8 27.6 24.8 26.2 45.0 50.2 47.5
Ours (w/o global opt.) 58.1 45.7 51.2 85.5 85.8 85.7 91.8 94.8 93.3 28.5 15.4 20.0 68.9 51.1 58.7 82.6 74.8 78.5

w/o reparam., hair moves freely to improve recall value
but causes noised shapes due to a lack of regularization. In
w/o N , individual strands move freely. In the case of curly
hair, the strands are easily entangled in close observation
and quickly become stuck in the local minima. The same
behavior was observed for straight hair, but the uniformity
of the hair flow had less negative impact on the numeri-
cal evaluation. In w/o strand init., because initial strands
are far from actual, hair growing stops in the middle of a
stretch. Note that increasing the learning rate may improve
hair growth, but shape collapse may also happen. In w/o
global opt., the boundary condition becomes heuristic, and
all 3D orientations on surface are treated as downward fac-
ing, resulting in partially wrong, opposite guide hair flow.
Even if the DR process allows 180° ambiguity, it will never
be the correct orientation because the initial value will set-
tle to the local minima of the direction it is facing. Turning
off the individual modules causes reasonable degradation,
which indicates that the effectiveness of each component of
our pipeline is validated.

Next, Figure 3 illuminates the robustness against hair
color. Hair color mainly affects the former part of our
pipeline, such as raw mesh reconstruction and 2D/3D ori-
entation estimation. Six colors with the same hair geometry
were tested, and our method reconstructed similar, accurate
strands for all colors, which indicates that our method can
handle various hair colors.

In Table 2 of the main paper, a quantitative comparison
was performed in 360° range to evaluate absolute hair flow
with synthetic data [16]. To align with the criteria used in
the previous papers [9, 12, 14], we show the evaluation tol-
erating 180° ambiguity in Table 1. Note that only evalua-
tion metrics were updated, and the same geometries shown

in Figure 1 and Figure 2 were used. The values of LPMVS
and Strand Integration become better because they are not
aware of 180° ambiguity. NeuralHaircut keeps the most val-
ues because it estimates the correct absolute hair direction
in this case. Ours is still best in most values.

2.2. Additional results on studio data

To demonstrate our method’s robustness on various real
hairstyles, Figure 4 and Figure 5 show more results on stu-
dio data. In addition to final child hair, guide hair is also
shown for each subject. The robustness of our framework
against diverse natural hairstyles is proven.

2.3. Additional physics simulation results

In Figure 6, the physics simulations with head movement
were compared in time series. The full sequence is avail-
able in the supplementary video. The natural behavior of
our strands indicates that our method is capable of recon-
structing simulation-ready hair strands.

2.4. Additional results on USC-HairSalon [5]

To address robustness against artistic hairstyles, we con-
ducted experiments using USC-HairSalon [5]. A total of 58
synthetic images were generated following the same pro-
cedure as Cem Yuksel’s hair models as input. Figure 7
illustrates that our approach adeptly reconstructs artistic
hairstyles.

3. Anti-aliasing validation
3.1. Comparison with existing AAs

Our anti-aliasing (AA) for line segments is validated on a
toy problem that grows a strand by DR. The toy problem



Figure 4. Additional results on studio data 1 / 2. From left to right, top view image, top view guide with 3D orientation, top view child
with Blender Cycles shading and 3D orientation, side view image, side view guide with random color, and side view child with Blender
Cycles shading and random color are shown. From top to bottom, the subjects with short hair, long hair, half bald head, and short-tied hair
are displayed. Our method enables realistic reconstruction for a wide range of hairstyles in the wild.

is to fit a minimum line segment with two vertices, one at
the root and one at the tip, into the target image, where the
silhouette of a long strand is depicted. The line segment is
initialized with the length in 20% of the target strand. Its
root is fixed, and the tip position is optimized. To validate
gradient quality itself, we used a simple optimizer, stochas-
tic gradient descent without momentum. The learning rate
was set to 1.0, and DR optimization with an L2 silhouette
loss was performed in 25,000 iterations. Per iteration, the
line segment is converted to a triangle, as shown in Figure

5 of the main paper. The triangle is rasterized in 128x128
pixels, and then each AA is applied.

In the experiments of the main paper, the width of our
strand is set to 0.2 mm, which is often thinner than one
pixel. So, in this validation, we tested root thickness in 1.0,
0.8, and 0.6 pixels. Thin width is prone to cause jumping
pixels by the nature of rasterization.

Figure 9 shows the quantitative comparison with nvd-
iffrast [6] and splatting [4], which are AAs for meshes.
Similar to ours, nvdiffrast is based on geometric AA, but



Figure 5. Additional results on studio data 2 / 2. From left to right, top view image, top view guide with 3D orientation, top view child
with Blender Cycles shading and 3D orientation, side view image, side view guide with random color, and side view child with Blender
Cycles shading and random color are shown. From top to bottom, the subjects with long-tied hair, short straight hair, wavy hair, stiff hair
that is not squished by gravity are displayed. Our method enables realistic reconstruction for a wide range of hairstyles in the wild.

its gradient generation is selective. Splatting is another ap-
proach that propagates gradients through the weighted sum
of neighbor pixels with differentiable screen space position
interpolation. Our AA generates gradients for all line edges
and propagates them to vertex positions via pixel-to-edge
distance. Ours can reduce loss monotonically, while the
other AAs show difficulty in handling tiny geometry. The
qualitative comparison is displayed in Figure 8. Our AA
generates a smooth gradient even with a very thin geome-
try, which leads to successful line segment alignment.

3.2. “CVPR” drawing by hair growing

Although the proposed pipeline utilizes the AA for fine-
tuning following initialization, it possesses sufficient capa-
bility for growth. The depiction of the “CVPR” drawing
with strands is presented in Figure 10. Each GT letter is
constructed using one, two, two, and three bundles for “C”,
“V”, “P”, and “R” respectively, wherein a bundle comprises
500 strands with 50 segments functioning as child hair, each
capable of independent movement. Target images were ren-
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Figure 6. Comparison of physics simulation with head motion. Full sequences are available in the supplemental video. Starting from the
reconstructed strands, gravity, hair stiffness and head rotation are applied to NeuralHaircut and ours. On the top two rows, the subjects of
studio data in Figures 1 and 10 of the main paper are shown. The bottom row shows the subject of H3DS in the top row of Figure 7 of the
main paper. Thanks to the correct hair growing direction, our hair shows more natural behavior under strong head movement. The original
scalp shapes and hair root positions are kept while the head model is replaced for privacy protection.

Figure 7. Additional results on USC-HairSalon [5]. From right to left, top view GT, top view guide with 3D orientation, top view child
with 3D orientation, top view shaded child, side view GT, side view guide with random color, side view child with random color, and side
view shaded child are shown. Our method successfully handles various hairstyles.



(a) 1.0 pixel width

(b) 0.8 pixel width

(c) 0.6 pixel width
GT init / target nvdiffrast [6] init / final splatting [4] init / final Ours init / final

Figure 8. Qualitative validation of our AA. Digital zoom is recommended. The fixed root vertex is on the top left, and the tip vertex to
be optimized is placed on the lower left of the root. Initial and final strands of various pixel widths are visualized. Our broader gradient
compared to other AAs demonstrates that the strands grow even when the width is much narrower than one pixel.
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(b) 0.8 pixel width
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(c) 0.6 pixel width

Figure 9. Quantitative validation of our AA. Error curves of various pixel widths are shown. The proposed method reduces errors in the
long term, whereas the existing method is stuck in the early stages of optimization.

dered from random views of GT hairs on a per-letter ba-
sis. GT hairs were shortened to 10% of their original length
as starting values for optimization utilizing DR. Each let-
ter was optimized independently by Adam optimizer. The
loss comprised Lm, Lo, Rroot, Rc, alongside regularizer for
equalizing segment lengths. For reparameterization, kNN
with k = 10 was performed for N at 50% of the origi-
nal length to address artifacts occurring at junctions. The
“CVPR” drawing demonstrates that our AA can optimize
complex shapes effectively.

4. Implementation details
4.1. Scalp fitting and hair region extraction

We describe the details of scalp fitting and hair region ex-
traction, corresponding to 3.1. Initialization of the main
paper. We project semantic segmentation [7] onto a raw
mesh from each view while extracting the hair region by
vertex-wise voting. Facial landmarks [1] are also projected.
Subsequently, 3D correspondences between the raw mesh
and the head template model are established, and similar-
ity transform is estimated using Umeyama’s method [15].
Non-rigid registration by deforming vertices is then carried
out. During the non-rigid registration process, as the raw
mesh included hairs, but some scalp regions were not vis-
ible, we only considered regions other than the hair, such
as the ears, face, and neck. More specifically, we rendered
depth images from each view and optimized the vertex po-
sitions with reparameterization [10] via differentiable ren-
dering to minimize an L1 depth loss within the facial area
and an L2 3D landmark loss. At this stage, the scalp area
might extend beyond the hair region in the raw mesh. To
address this, we performed a post-process to push the scalp
area into the raw mesh. Based on the same non-rigid regis-
tration framework, an L1 silhouette loss between the head
model’s scalp area and the raw mesh’s hair region is mini-
mized with a regularization term to keep facial depth values.
The final scalp mesh is obtained from the scalp area of the
head mesh through linear interpolation.

4.2. Detailed description of the scalp boundary con-
dition

To clarify S(ps) in the Equation 2 of the main paper, Fig-
ure 11 illustrates the contrast between the scalp normal
ns(ps) and S(ps). Our S(ps) reflects the natural directions
of scalp pores.

4.3. Detailed description of the motivation for repa-
rameterization

We will explain our motivation of 3.2. Hierarchical Strand
Optimization | Reparameterization of the main paper in
detail. Our hair is represented as a set of thin geometries
of less than one pixel, and the visibility in screen-space is
stochastic due to the nature of hardware rasterization. The
outermost strands are not always rasterized, and the inner
strands may show through. Naı̈ve DR optimization can eas-
ily collapse hairstyles since it makes only the visible divi-
sion points of strands move at each iteration as w/o reparam.
in Figure 1 and Figure 2. On the other hand, reparameteriza-
tion, countermeasures for sparse gradients in geometry, has
been studied in the context of meshes [10]. We, therefore,
proposed the reparameterization for line segments, where
each Laplacian element has the following regularizing ef-
fect: F : If a small part of a strand is visible, the whole
strand moves smoothly based on the visible part; N : Al-
ways, even if a strand is not visible at all, the strand moves
smoothly based on the other visible strands in the neighbor-
hood.

4.4. Hair mask for DR loss

At 3.2. Hierarchical Strand Optimization | Guide/Child
Hair Optimization of the main paper, we generate hair
masks for Lm through the hair region of the raw mesh in
a similar manner to NeuralStrands [12]. First, silhouettes
are rendered with the hair region mesh onto each view. Be-
cause a multi-view voting scheme estimates the hair region
mesh, our silhouette extraction is more tolerant of severe
failures than applying 2D silhouette extraction to the input



(a) GT

(b) Initial strands (10% length of the GT)

(c) Intermediate strands

(d) Optimized strands

Figure 10. “CVPR” drawing by DR-based hair growing. The en-
tire sequence is available in the supplementary video. The images
were ray-traced by Blender Cycles after each letter was optimized
independently.

images individually. Then, the tri-map is made by erosion
and dilation. KNN Matting [3] with the tri-map and an in-
put color image is finally applied to generate an alpha hair
mask.

4.5. Module-level performance measurement

We report relative time spent on each module in Table 2.

(a) Normals at scalp, ns(ps) (b) Our S(ps)
Figure 11. Comparison of scalp normal and our S(ps). (a) Nor-
mals at the scalp, ns(ps). Growing directions at the side and back
are different from real humans. (b) Our hair orientation at scalp
S(ps). Strands can grow more naturally at the side and back.

Table 2. Time consumption ratio per module

Raw mesh reconstruction 4%
Scalp fitting 20%
3D Orientation estimation 18%
Strand initialization 5%
Hair mask generation 15%
Strand optimization by DR 38%
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