
Supplementary Material for Mind The Edge: Refining Depth Edges in
Sparsely-Supervised Monocular Depth Estimation

Lior Talker1 Aviad Cohen1 Erez Yosef1,2 Alexandra Dana1 Michael Dinerstein1

1Samsung Israel R&D Center, Tel Aviv, Israel 2Tel Aviv University, Israel
{lior.talker,aviad.cohen,alex.dana,m.dinerstein}@samsung.com erez.yo@gmail.com

In the following section we provide additional details,
examples and results for the experiments described in the
main paper.

1. The Synscapes dataset
To simulate a real oudoor dataset with LIDAR supervision,
we sample pixels from the dense depth GT in a typical LI-
DAR pattern, similarly to the KITTI dataset, with 64 verti-
cal beams and an horizontal beam density of 0.09 degrees
between beams. Since this is a naı̈ve approach we follow
the LIDAR density, presented in Fig. 3 of the main paper,
and randomly remove LIDAR samples such that the result-
ing distribution is similar to KITTI’s. Note, however, that
the true LIDAR spatial distribution in KITTI is more com-
plex than our simulation since large continuous areas lack
LIDAR samples in KITTI, in contrast to our simulation.
We hypothesize that a more realistic simultion would result
in worse depth edges of the baseline, increasing the depth
edges performance gap from our method.

In Fig. 12 we present two images from the Synscapes
dataset alongside the depth prediciton of the baseline and
our method (with Packnet-SAN). It can be seen that al-
though the Packnet-SAN baseline is has mostly accurate
edges, our method still outperforms it in some parts of the
image. The quantitative results are presented in the main pa-
per (Tab. 3) and in the bottom of Fig. 1, which demonstrate a
small, but consistent improvement in the depth edges qual-
ity. Importantly, as argued in the main paper, the per-pixel
metrics, e.g., ARE, of our method is significantly better,
which suggests that when dense depth is available, the im-
provement in the edge quality is translated into an improve-
ment in the per-pixel depth metrics.

2. Simultaneous Training on Source and Target
In Fig. 3, Tab. 1 and Tab. 2 we report an experiment
where we trained Packnet-SAN simoultaneously on the
source (GTA-PreSIL) and the target (KITTI or DDAD) with
the depth loss. Both in KITTI (denoted as Packnet-SAN
(K+G)) and in DDAD (denoted as Packnet-SAN (D+G))

Figure 1. Precision and recall of the depth edges of the baseline
vs. our method for Packnet-SAN on the Synscapes dataset.

the edge metric (AUC) is similar or slightly better than the
baseline trained on KITTI or DDAD alone. However, the
depth metrics (ARE) are significantly worse, often twice
as worse. We conclude that our method is a significantly
better alternative than simoultaneous training. Furthermore,
we note that simoultaneous training is also more time con-
suming since for each target dataset the source has to be
trained as well. In addition, training on GTA-PreSIL, fol-
lowed by training on KITTI does not yield good perfor-
mance, where the edge and ARE metrics are slightly worse
than the Packnet-SAN baseline.

3. Using RGB Edges Instead of Depth Edges

A potential simple alternative for the use of the depth edges,
obtained from the DEE network, is to use image edges, ob-
tained using an edge detector running directly on the RGB
images. We used Canny edge detector (empirically set
thresholds to 120 and 160) to extract multiscale edges and
normals, which were used to train Packnet on KITTI with
edge loss, instead of using our DEE output. The quantitative
results using Packnet are 4.61% ARE (worse than baseline
and ours) and 49.28% (42.09%) AUC (slightly better than
the baseline but significantly worse than ours) on the KDE
dataset. These results emphasize the importance of the DEE
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RGB Standard Gradient Orthogonal Gradient

Figure 2. The standard spatial image gradient (named ’standard’) and our proposed orthogonal to the edges spatial gradient (named
’orthogonal’). See Sec. 3.2 in the main paper for details.

KITTI-DE DDAD-DE

Figure 3. Precision and recall of the depth edges on the KITTI-DE and DDAD-DE evaluation sets. Each of the points on the graphs
that correspond to an MDE method is generated with different parameters of the Canny edge detector. Each of the points on the graphs that
correspond to the DEE method is generated by thresholding the depth edge probability in the range (0, 1).

network, as edges from the RGB are highly noisy and their
correlation to the depth edges is not high enough (see false
edges in Fig. 4).

Figure 4. Training on RGB edges instead of depth edges.

4. Virtual Human Insertion for Data Aug.

We demonstrate another potential use for our method - in-
serting virtual humans to automotive images, potentially for
data augmentation. In Fig. 5 we present a virtual human in-
serted to the scene, where in our method the occlusion is
significantly more realistic than the baseline.

Figure 5. Virtual human insertion. Left: Packnet-SAN (baseline),
Right: Packnet-SAN + EL (ours).



Method KITTI-DE KITTI test
AUC (edges) ↑ ORD ↓ ARE ↓ δ < 1.25 ↑ ORD ↓ ARE ↓ δ < 1.25 ↑

Packnet-SAN 47.56% (39.40%) 7.68% 3.45% 98.66% 12.40% 6.17% 95.39%
Packnet-SAN (K+G) 53.55% (41.83%) 8.81% 6.01% 95.83% 11.78% 8.90% 91.04%
Packnet-SAN (G→ K) 45.56% (35.39%) 8.52% 5.26% 96.39% 11.29% 8.02% 92.28%
Packnet-SAN + BoostingDepth (O) 46.04% (37.07%) 10.35% 9.32% 88.90% 12.63% 11.10% 86.41%
Packnet-SAN + BoostingDepth (K) 36.19% (31.27%) 9.47% 7.24% 93.62% 11.45% 8.33% 91.99%
Packnet-SAN + GradientFusion 44.51% (34.10%) 9.18% 5.93% 95.66% 11.15% 7.18% 94.17%
LeRes + GradientFusion 44.59% (34.53%) 12.02% 17.26% 71.26% 12.80% 15.76% 76.12%
Packnet-SAN + EL (ours) 61.87% (49.02%) 7.75% 3.61% 98.53% 12.48% 6.50% 95.06%
AdaBins 41.23% (34.11%) 7.69% 3.14% 98.78% 10.14% 6.28% 95.85%
AdaBins + EL (ours) 53.47% (44.00%) 7.64% 3.11% 98.79% 10.13% 6.21% 95.87%
PixelFormer 32.79% (26.44%) 7.47% 3.00% 98.79% 7.56% 5.45% 96.98%
PixelFormer + EL (ours) 46.23% (35.33%) 7.53% 2.94% 98.80% 7.58% 5.59% 96.72%

Table 1. Results on the KITTI dataset. The AUC is given for the range where at least one MDE method has valid measurement:
[0.12,0.65]. In parentheses we also report the AUC of the full [0,1] range. In BoostingDepth, O is for the original training (dense data)
by the authors, and K is for our training (KITTI data). K+G and G → K stand for simultaneous training on KITTI and GTA-PreSIL, and
training on GTA-PreSIL followed by training on KITTI.

Method DDAD-DE DDAD test
AUC (edges) ↑ ORD ↓ ARE ↓ δ < 1.25 ↑ ORD ↓ ARE ↓ δ < 1.25 ↑

Packnet-SAN 31.52% (23.32%) 8.03% 8.89% 91.62% 8.95% 9.49% 90.7%
Packnet-SAN (D + G) 29.89% (25.49%) 10.37% 14.09% 83.14% 12.29% 16.74% 78.09%
Packnet-SAN + EL (ours) 48.32% (32.29%) 8.38% 8.99% 91.44% 9.43% 10.0% 89.5%

Table 2. Results on the DDAD dataset. The AUC is given for the range where at least one MDE method has valid measurement:
[0.14,0.37]. In parentheses we also report the AUC of the full [0,1] range. D+G stands for simultaneous training on DDAD and GTA-
PreSIL.

Figure 6. Precision and recall of the DEE model with RGB only
and RGB+LIDAR inputs, inffered on the KITTI-DE dataset.

5. Comparison to BoostingDepth [4] details

To adjust BoostingDepth to Packnet-SAN, we computed
Packnet-SAN’s receptive field both theoretically and em-
pirically and obtained a recpetive field of 1028 pixels.

Figure 7. The architecture of the DEE model.

We utilize it as required by their method. To train the
depth merger on KITTI data (called ’Packnet-SAN + Boost-
ingDepth (K) in this paper), we generate training data as
explained in BoostingDepth’s Github repository, where the



RGB Baseline Ours

RGB Baseline Ours

Figure 8. Examples of depth predictions of Packnet-SAN and Packnet-SAN + EL (ours) of images from the DDAD-DE dataset - Part I.

low-resolution patches are taken to be in the Receptive Field
(RF) size of Packnet-SAN (10282) and the high-resolution
paches are taken to be the entire image (12802). Note that
the original weights of the depth merger were trained with
the IBims-1 [3] and the Middlebury [5] datasets, and used
the depth maps of e.g., MIDAS. In this case the ratio be-
tween the low-resolution patches and the high-resolution

patches, 3842 and 6722 is much larger than in our case,
which may contribute to the difference in performance de-
picted between the depth mergers. This difference, which is
an unchangeable constant, is a limitation of BoostingDepth
which relies on the RF of the MDE and the size of the im-
age. Furthermore, we hypothesize that the KITTI dataset
does not contain sufficient depth information near depth
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Figure 9. Examples of depth predictions of Packnet-SAN and Packnet-SAN + EL (ours) of images from the DDAD-DE dataset - Part II.

edges (see Fig. 3 in main paper) due to the LIDAR spar-
sity, which results in the high resolution depth predictions
of Packnet-SAN to have inaccurate edges, differently from
the original depth merger trained on dense datasets. The
qualitative results are presented in Fig. 10.

6. Additional Details

6.1. KDE and DDE Datasets Annotation Details

As discussed in the paper, we manually annotate 102 images
of KITTI (i.e., KDE dataset) and 50 images of DDAD (i.e.,



Figure 10. Full Images (zoom-ins in Figure 11) of depth predictions of Packnet-SAN, AdaBins, PixelFormer (both baseline and ours) and
BoostingDepth and GradientFusion with the original depth merger and the version we trained on KITTI. The last row depicts the result of
the DEE network on those images, which are taken from the Eigen KITTI testset.

DDE dataset). To ease the annotation process, we start from edge maps of panoptic (semantic + instance) segmentation



RGB Packnet AdaBins PixelFormer BD (O) GF (Packnet)

Packnet+EL AdaBins+EL PixelFormer+EL BD (K) GF (LeRes)

RGB Packnet AdaBins PixelFormer BD (O) GF (Packnet)

Packnet+EL AdaBins+EL PixelFormer+EL BD (K) GF (LeRes)

RGB Packnet AdaBins PixelFormer BD (O) GF (Packnet)

Packnet+EL AdaBins+EL PixelFormer+EL BD (K) GF (LeRes)

Figure 11. Zoom-ins of the depth predictions from Fig. 10. The bottom three zoom-in rows, from top to bottom, correspond to the three
columns on top, from left to right. BD and GF corresponds to BoostingDepth and GradientFusion, respectively.

of those images, which yields an edge map which contains
most of the depth edges in the scene (see Fig. 13), but typi-
cally has the following shortcomings: (i) Some classes, e.g.,
building, do not have instance segmentation so potential
depth edges between different instances do not exist. (ii)
Some edges between different classes, e.g., (bottom of) car
and road or road and sidewalk, do not necessarily reflect dis-
continuities in depth. In the first case, we add the relevant
depth edges (see green examples in Fig. 13), and in the sec-
ond case we remove the relevant edges (see red examples in
Fig. 13).

The annotators’ guideline for adding or removing edges
from the initial edge map from the panoptic segmentation
is 4 meters. That is, a depth edge should be annotated if
between the two sides of the depth edge there exists a depth
discontinuity of at least 4 meters (this is estimated by the
annotator). We also note that on average the number of an-
notated depth edges occupy ∼ 2% of the image (∼ 10K
pixels).
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Figure 12. Examples of depth predictions of Packnet-SAN and Packnet-SAN + EL (ours) of images from the Synscapes dataset.

Figure 13. Examples of the annotation process (the edges are dilated for visualization purposes). (a) The RGB image. (b) The edges of the
instance segmentation GT. (c) The depth edges GT, where green and red rectangles exemplifies edge addition and deletion, respectively.



6.2. RGB and RGB+LIDAR in the DEE network

As we argue in the main paper that the performance of the
DEE network is significantly better when the input is RGB
and LIDAR, in constrast to RGB only. In Fig. 6 we present
the depth edges precision-recall graph for the DEE network
on the KITTI-DE dataset, where the performance gap in fa-
vor of the RGB+LIDAR input is clearly present. Moreover,
examples of the output of the DEE network is presented in
the bottom row of Fig. 10.

6.3. Depth Edge Loss

As we argue in the main paper (L370), using the standard
spatial image gradient often yield undesired artifacts. See
the stripes over the car silhouette for a depiction of this phe-
nomenon in Fig. 2. The quantitative performance on the
KITTI-DE dataset is also somewhat lower: ARE: 4.03%
and AUC (edges): 59.3% (48.13%).

6.4. Implementation Details

The DEE network follows the architecture of the U-net like
PackNet-SAN [1] (Fig. 7) which was used as an MDE net-
work. One of the beneficial properties of PackNet-SAN is
its sparse encoder for the sparse LIDAR signal, which uses
only sparse layers (e.g., sparse convolutions), which is suit-
able for our case of depth edges estimation. The DEE net-
work is trained for five epochs on the GTA-PreSIL dataset
[2]. For training the MDE using our edge loss, we set
α = 0.1 and α = 1.0 for Packnet-SAN and AdaBins, re-
spectively. Also, we note that AdaBins is trained only with
the largest scale for both baseline and our method as in the
original training.

7. Additional Examples for KITTI and DDAD
We present additional qualitative results for KITTI in
Fig. 10 and for DDAD in Fig. 8 and Fig. 9.
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