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A. Experimental Setup
In this section, we describe the details of our experimental setup used for the results in the main text. We include information
about our ablation study as well as hyperparameters used for training both FEDSELECT and the compared baselines.

A.1. Implementation Details

Models & Datasets. We conduct experiments on 4 datasets: CIFAR-10 [4], CIFAR10-C [3], Mini-ImageNet [14], and
OfficeHome [13]. CIFAR10 contains 60,000 image samples across 10 labeled image categories, from which 50,000 are
selected for training and the remaining 10,000 for testing; CIFAR10-C contains the same set of training samples as CIFAR10,
with different types of image corruptions (severity = 5) for each client. Mini-ImageNet contains 50,000 training samples
and 10,000 testing samples, across 100 image categories. Finally, the OfficeHome dataset contains data across 4 domain
shifts and 65 image categories with 2162, 3909, 3969, 3892 training samples for each of the 4 domains, respectively. The
corresponding test set sizes are 265, 456, 470, and 465 testing samples.

Data Partioning For all experiments, training samples were distributed to each client in a non-IID fashion. For experiments
involving either CIFAR10 or CIFAR10-C, training samples for each client were additionally truncated to a fixed size Nk;
however the test set size for each client remained fixed at 200. We follow the learning setups presented in [5, 15] and limit the
number of data samples per client to ensure the necessity of federated learning to achieve optimal performance as opposed to
pure local training. We define the shard s as the number of classes assigned to a client, which is set to s = 2 in all CIFAR10
& CIFAR10-C experiments and s = 10 for the Mini-ImageNet experiment. For the OfficeHome experiment, there are 4
clients for each domain shift, such that each client is allocated to the full dataset of its domain as in [12].

Types of Distributional Shift. For the CIFAR10 and Mini-ImageNet experiments, we use a label-based partition; therefore
there is label shift among the clients’ data distributions. For the CIFAR10-C experiments, while using a labeled-based
partition, we also apply a random type of image corruption to each client, which introduces feature shift. Finally for the
OfficeHome experiments, there is primarily feature shift since the images from each client are from different domains.

Compared Algorithms. In addition to FedAvg [8], we compare our method to several full model personalization methods:
local-only training, FedAvg with local fine-tuning (FedAvg + FT), and Ditto [6] which personalizes clients via a multi-task
learning objective. We also compare against partial model personalization methods: FedBABU [9] which only updates
and aggregates the feature extractor; FedRep [2] and FedPer [1] which aggregate client feature extractors and personalize
classifier heads; LG-FedAvg [7] which personalizes the clients’ feature extractors; FedPAC [15] which performs local-global
feature alignment via classifier collaboration.

Hyperparameters. For all methods, we use 3 local training epochs using stochastic gradient descent (SGD) optimizer
momentum. We tuned the learning rate over {0.1, 0.01, 0.001} for all of the compared baselines. For the parameter de-
coupling methods [1, 2, 7, 9], this entails setting the learning rates for the respective feature extractors and classifier heads
that are locally updated. As a result, we used a learning rate of 0.01 for the CIFAR-10 and CIFAR10-C experiments, and a
learning rate of 0.001 for the OfficeHome and Mini-ImageNet experiments. For FEDSELECT, we follow the recommendation
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α = 0.05 α = 0.30 α = 0.50 α = 0.80

p = 0.01 81.35 81.35 81.85 80.65
p = 0.05 80.10 82.25 82.20 81.40
p = 0.20 80.55 81.70 81.65 82.15
p = 0.50 82.05 82.05 81.60 81.20

Table 1. Performance (% mean client test accuracy) of FEDSELECT on CIFAR-10 when varying both the personalization limit α and the
personalization rate p.

α CIFAR10 CIFAR10-C

0.05 80.10 68.30
0.10 81.25 69.05
0.20 81.15 70.65
0.30 82.25 70.60
0.40 81.10 70.55
0.50 82.20 72.05
0.60 81.60 70.90
0.80 81.40 71.40

Table 2. Performance (% mean client test accuracy) of FEDSELECT on both CIFAR-10 and CIFAR-10C when varying the personalization
limit α.

of choosing different learning rates for global and personal parameters given in the partial model personalization framework
[11]. Specifically, we use a learning rate of 0.1 for the personal parameters and 0.001 for the global parameters for the
CIFAR-10 experiments. Our reported experiments (excluding Table 1) use a personalization rate of p = 0.05. Extended
results for a grid search across a selection of values for p and α are described in Appendix B.2. We set the personalization
hyperparameter λ of Ditto to 0.75 after tuning over {0.25, 0.50, 0.75}, which follows the setting used by FedBABU [9].

B. Additional Experimental Results
In this section we provide further experimental results and clarify additional details of the ablation study described in the
main text.

B.1. Ablation Study Details

One of the components of our ablation study of the key design choices involved in FEDSELECT involves choosing 4 different
layers (denoted as Layer A/B/C/D in Section 5.2 of the main text) for personalization. We selected Layers A, B, C, and D
from ResNet18 given by their PyTorch [10] layer-names in the library-provided ResNet18 implementation: Layer A refers
to ’conv1.weight’; Layer B refers to ’layer1.0.conv1.weight’; Layer C refers to ’layer2.0.conv1.weight’; Layer D refers to
’layer4.1.conv1.weight’.

B.2. Effect of p and α on personalization

For the following described experiments in this subsection, we use the same data partition split as in the CIFAR-10 experi-
ments presented in the main text; 100 training samples and 200 testing samples are allocated for each client with 10 clients
undergoing full participation FL, and each client is allocated 2 image category classes.

Varying the personalization rate p. We present additional experimental results for varying the personalization rate p
alongside the personalization limit α for CIFAR-10 in Table 1. We observe the best performance occurs when p = 0.05 for
a limit of α = 0.30. We also note that when p > α, the personalization limit is reached after the first round. In general, we
suggest using a smaller p with a larger α when attempting to personalize many client parameters, rather than personalizing
with a very high rate (p > 0.20).

Varying the personalization limit α. We showcase the performance of FEDSELECT on CIFAR-10 under a wide range of
values for α ∈ [0, 1] in Table 2 for a fixed personalization rate p = 0.05. From Section 4.4 of the main text, we have that
FEDSELECT intuitively performs an interpolation of the two extremes of personalization: pure federated averaging (α = 0.0)
and eventual pure local training α = 1.0. We generally recommend using middle-ground values of α ∈ [0.3, 0.5].



Method Nk = 20 Nk = 40 Nk = 100 Nk = 200

FedAvg 23.55 24.70 27.70 26.90
FedAvg + FT 37.65 72.35 75.30 83.50
FedPAC 68.30 67.00 77.20 81.65
FedRep 70.10 73.00 67.60 78.15
FedPer 55.70 75.15 75.40 83.15
FedBABU 33.10 66.10 75.45 81.80
Ditto 37.25 71.55 72.75 81.65
LG-FedAvg 71.45 74.70 77.65 83.90
FedSelect 72.25 78.20 82.25 84.85

Table 3. Comparison of performance (% mean client test accuracy) on CIFAR-10 when varying the training data size Nk per client ck.
Each client was assigned with 2 classes.

B.3. Robustness to sample size.

We present the mean client performance of FEDSELECT and the compared baselines for client training data sizes Nk ∈
{20, 40, 100, 200} in Table 3, where k represents the k-th client ck. To ensure a fair comparison of performance across each
setting of Nk, we designated the same test sets for each client, which had 200 testing samples each. Notably, we observe that
FEDSELECT maintains superior performance across each data size setting, particularly for low client training dataset sizes
Nk ≤ 40, where algorithms such as FedBABU, Ditto, and FedPer suffer a significant performance decrease.



C. Convergence Analysis
In this section, we analyze the convergence of FEDSELECT. Specifically, we first prove in Theorem 1 that the mask for each
client is guaranteed to converge in finite communication rounds. We then prove in Theorem 2 that once the masks for all
clients converge, the model parameters have the same convergence guarantee as block stochastic gradient descent.

Theorem 1 (Convergence of masks). Under full client participation, the masks for all clients converge in finite communica-
tion rounds.

Proof. For each client ck, the set of personalized parameter indices are monotonically increasing, i.e., Idx(v0k) ⊂ Idx(v1k) ⊂
· · · ⊂ Idx(vTk ). Meanwhile, the cardinality of this set is upper bounded by αd, where α is the personalization limit and d is
the dimensionality of the parameter. Therefore, the masks for all clients converge in finite communication rounds.

Theorem 2 (Convergence of parameters). Under full client participation, when the number of local steps τ = 1 and partic-
ipation, after the masks for all clients converge, FEDSELECT has the identical convergence guarantee as centralized block
stochastic gradient descent (block SGD).

Proof. We let θk[i] denote the i-th parameter on client ck and mk[i] denote its corresponding mask, where mk[i] = 0 means
the parameter is globally shared and mk[i] = 1 means the parameter is personalized (on client ck). If a parameter is global,
i.e., shared across several clients, we use θ[i] to denote such parameter. After the masks for all clients converge, FEDSELECT
becomes an optimization problem over the union of the global parameters and each client’s personalized parameters:
• Global parameters: U = {θ[i] : ∀i,∃k, s.t. mk[i] = 0}
• Personalized parameters: V = {θk[i] : ∀k, i, s.t. mk[i] = 1}
and the optimization objective is

F (U, V ) =
1

N

N∑
k=1

fk(uk, vk)

where uk ⊂ U and ∪Nk=1vk = V .
For example, consider a system with 3 clients and corresponding masks

m1 = [1, 1, 0, 0],m2 = [1, 0, 1, 0],m3 = [1, 0, 0, 1]

then, we have

u1 = [θ1[3], θ1[4]] = [θ[3], θ[4]], v1 = [θ1[1], θ1[2]],

u2 = [θ2[2], θ1[4]] = [θ[2], θ[4]], v2 = [θ2[1], θ2[3]],

u3 = [θ3[2], θ3[3]] = [θ[2], θ[3]], v3 = [θ3[1], θ3[4]],

and

U = [θ[2], θ[3], θ[4]],

V = [θ1[1], θ1[2], θ2[1], θ2[3], θ3[1], θ3[4]]

For clarification, we use the original client and parameter indices k and i as the indices of U and V .
After the masks converge, in each communication round, each client conducts LocalAlt (see Algorithm 2), which is SGD

on personalized parameters v followed by SGD on global parameters u. After LocalAlt, the global parameters are aggregated
on the server. Next, we show that each communication round is equivalent to central block SGD on U and V alternatively.
• Update personalized parameters: Each client independently optimize its personalized parameter. This is equivalent to

centralized SGD w.r.t. V , since

∂F

∂Vk[i]
=

∂F

∂θk[i]



• Update global parameters: Eech client first optimize its local copy global parameter. Then, each client’s updated local copy
will be uploaded to the server for aggregation, i.e., for the i-th parameter,

u+
k [i]← uk[i]− γu

∂fk(uk, vk)

∂uk[i]
,∀k (local update)

uk[i]←
1∑N

k=1(1−mk[i])

N∑
k=1

(1−mk[i])u
+
k [i] (aggregation)

This is equivalent to

uk[i]← uk[i]−

(
γu

N∑N
k=1(1−mk[i])

)
· ∂F

∂Uk[i]

which is centralized SGD w.r.t. U .
Therefore, the optimization process is numerically equivalent to block SGD with U, V alternatively.
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