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1. Comparison on COCO Test-dev.

We provide the performance of our proposed approach com-
pared to other state-of-the-arts methods on the COCO test-
dev2017 dataset. As evidenced by the results presented in
Table 1, our proposed DiffusionRegPose approach demon-
strates a substantial superiority over all bottom-up and one-
stage methods. Furthermore, it outperforms specific top-
down methods, including Mask R-CNN and PRTR (ResNet).
However, it is essential to acknowledge that our method
exhibits a minor gap compared to the PRTR with the HRNet-
w32 as the backbone.

2. Network Parameters of Proposed Model

Our model fθ consists backbone, encoder E, human-
detection decoder DH , human-to-keypoint token expansion
module FH2K and diffusion decoder D. Among these com-
ponents, both the encoder E and the diffusion decoder D
differ from those utilized in ED-Pose [13], whereas the re-
maining components are implemented in the same way. The
distinct components are outlined in Table 2, wherein the time
embedding is incorporated into the encoder E. The time
embedding involves the scaling and shifting of extracted
features. The self-attention (SA) and cross-attention (CA)
mechanisms employed in the diffusion decoder D align with

the SA(·) and CA(·) modules discussed in Section 3.

3. Evaluation on Computational Complexity
Table 3 presents an evaluation of the computational complex-
ity in terms of network parameters, floating-point operations
(FLOPs), and processing speed in frames per second (FPS)
by comparing end-to-end frameworks like ED-Pose [13] and
GroupPose [6] with our proposed DiffusionRegPose. As can
be seen, the incorporation of the modules specified in Ta-
ble 2 leads to a marginal increase in the number of network
parameters and inference time. However, the computational
amount (FLOPS) of our model is reduced compared to other
approaches. Since we are not focusing on optimizing the
network structure in this work, there is still space to further
improve our DiffusionRegPose in the future research, e.g.,
by designing a more lightweight network architecture.

4. Training Process
For a better overview about the training process, we present
its details in Algorithm 1.

5. Visualized Results on COCO
We present supplementary qualitative results on the COCO
Val2017 dataset in Figure 1. It is evident that our proposed

Table 1. Comparisons with state-of-the-art methods on COCO test-dev2017 dataset. “†” symbolizes the flip test. “TD”, “BU”, and “OS”
denote the top-down, bottom-up, and one-stage methods, respectively. “HM”, “BR” and “KR” indicate adopting heatmap-based losses,
human box regression losses and keypoint regression losses, respectively. All AP values are displayed in %. The 1st, 2nd and 3rd place are
color coded for metrics with more than three distinct values.

Method Ref Backbone Loss AP AP50 AP75 APM APL

N
on

-E
nd

-t
o-

E
nd

TD

Mask R-CNN [3] CVPR 17 ResNet-50 HM 63.9 87.7 69.9 59.7 71.5
Mask R-CNN [3] CVPR 17 ResNet-101 HM 64.3 88.2 70.6 60.1 71.9

PRTR† [5] CVPR 21 ResNet-101 KR 68.8 89.9 76.9 64.7 75.8
PRTR† [5] CVPR 21 HRNet-w32 KR 71.7 90.6 79.6 67.6 78.4

BU

HrHRNet† [1] CVPR 20 HRNet-w32 HM 66.4 87.5 72.8 61.2 74.2
DEKR† [2] CVPR 21 HRNet-w32 HM 67.3 87.9 74.1 61.5 76.1

SWAHR† [7] CVPR 21 HRNet-w32 HM 67.9 88.9 74.5 62.4 75.5
LOGO-CAP† [12] CVPR 22 HRNet-w32 HM 68.2 88.7 74.9 62.8 76.0

OS

DirectPose [11] - 19 ResNet-50 KR 62.2 86.4 68.2 56.7 69.8
CenterNet† [14] - 19 Hourglass-104 KR+HM 63.0 86.8 69.6 58.9 70.4

FCPose [8] CVPR 21 ResNet-50 KR+HM 64.3 87.3 71.0 61.6 70.5
InsPose [9] ACM MM 21 ResNet-50 KR+HM 65.4 88.9 71.7 60.2 72.7

E
nd

-t
o-

E
nd

OS

PETR [10] CVPR 22 ResNet-50 KR+HM 67.6 89.8 75.3 61.6 76.0
ED-Pose [13] ICLR 23 ResNet-50 BR+KR 69.8 90.2 77.2 64.3 77.4
GroupPose [6] ICCV 23 ResNet-50 KR 70.2 90.5 77.8 64.7 78.0

DiffusionRegPose - ResNet-50 BR+KR 70.6 90.5 78.6 64.9 78.4



Table 2. Parameters of distinct modules from ED-Pose.

Name Network structure Channel (in, out)

Time embedding

Sinusoidal Position
Embeddings + Linear

+ GELU + Linear
(1, 1024)

SiLU + Linear (1024, 256)

Self-attention (SA)
LinearQ (2, 256)
LinearK (2, 256)
LinearV (2, 256)

Cross-attention (CA)
LinearQ (2, 256)
LinearK (2, 256)
LinearV (2, 256)

Table 3. Compasrison of model parameters, FLOPs, and FPS with
backbone of ResNet-50 on NVIDIA 3090 GPU.

Method Parameters (M) FLOPs (G) FPS
ED-Pose 48.06 276.51 7.25
GroupPose 46.95 281.60 10.56
DiffusionRegPose 49.38 272.77 6.15

Algorithm 1 Training DiffusionRegPose model fθ
1: Input: image x, keypoint labels y0, GT of human boxes

b0, box class labels c0, total number of diffusion steps
T , model fθ containing backbone, encoder E, human-
detection decoder DH , human-to-keypoint token expan-
sion module FH2K and diffusion decoder D.

2: repeat
3: Sampling step index: t ∼ Uniform({1, . . . , T})
4: Extracting feature: xfea = backbone(x)
5: Tokenized representation: F = E(xfea)
6: Human box token: FH = DH(F )
7: Human-to-keypoint token expansion:

FH2K = DH2K(F, FH)
8: Adding noise: yt = q (yt | y0, ζ)
9: Tokens for self-attention:

Qyt
,Kyt

, Vyt
= MLPX∈(Qs,Ks,V s)(yt)

10: QCK = SA(Qyt
,Kyt

, Vyt
)

11: Tokens for cross-attention:
QKSA

= MLPQc(QCK),
KFH2K

, VFH2K
= MLPX∈(Kc,V c)(FH2K)

12: cKpts, cBox = CA(QKSA
,KFH2K

, VFH2K
)

13: Decoding: y′t, bt, ct = D (cKpts, cBox)
14: Keypoint loss: Lk = ∥y′t − y0∥1
15: Box loss: Lh = ∥bt − b0∥1
16: Classification loss: Lc = FocalLoss(ct, c0)
17: Update entire model fθ with gradient descent step:

∇θ (Lk + Lh + Lc)
18: until Converged

DiffusionRegPose framework adeptly handles keypoint esti-
mation in occluded scenarios, as shown in the yellow dashed
circle. Please kindly zoom in for the best viewing.

6. Keypoint Completion in Various Scenes
According to the keypoint completion method introduced
in Section 3, we present more human instances with invis-
ible keypoints completed in various scenes in Figure 2 to
demonstrate its efficacy. Please kindly zoom in for the best
viewing.

7. Diffusion Steps Evaluation
Compared to multi-step denoising, our one-step denoising
achieves sufficient accuracy, as evidenced in Table 4. We
present visualized pose estimation results at various denois-
ing stages in Figure 3. Specifically, the blue dots illustrate
the prediction outcomes for the right elbow. Our proposed
method showcases a greater diversity and an expanded spec-
trum of potential predictions for obscured keypoints of the
human body, in contrast to the distribution of the clustered
right elbow predicted by the ED-Pose method. The objective
of DiffusionRegPose is not to predict a single optimal pose
but rather to approximate a set of poses that can effectively
represent the posterior distribution.

Table 4. Study on denoising steps on CrowdPose test set.
Method step AP AP50 AP75 FPS
ED-Pose - 69.9 88.6 75.8 7.25

DiffusionRegPose 1 72.68 91.15 79.25 6.15
DiffusionRegPose 2 72.73 91.15 79.27 4.17
DiffusionRegPose 3 72.72 91.12 79.24 3.23

8. Evaluation of Different Backbones
The evaluation of our method using the Swin-L backbone on
CrowdPose is provided, significantly surpassing the ED-Pose
(Swin-L). This is consistent with the adoption of ResNet-50
as backbone.

Table 5. Compared one-stage methods using different backbones
on CrowdPose test set.

Method AP AP50 AP75 APE APM APH APb

ED-Pose (ResNet-50) 69.9 88.6 75.8 77.7 70.6 60.9 60.2
ED-Pose (Swin-L) 73.1 90.5 79.8 80.5 73.8 63.8 -

DiffusionRegPose (ResNet-50) 72.7 91.1 79.3 79.3 73.3 64.9 63.1
DiffusionRegPose (Swin-L) 73.9 91.8 80.4 79.7 74.7 66.4 63.6
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Figure 1. Qualitative comparison of DiffusionRegPose (based on ResNet-50) (in the third row) with ED-Pose (based on ResNet-50) (in the
second row) on COCO val2017. The original images are displayed in the first row for reference.
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Figure 3. DiffusionRegPose produces poses with higher diversity, capturing the underlying uncertainty in a similar way to [4].
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