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Besides experiments reported on MovieNet [4],
BBC [1], and OSVD [7] in our manuscript, we supplement
more studies of our method on MovieNet.

1. Additional Experimental Results
The following results are obtained in a fully supervised
manner, unless otherwise specified.

NeighborNet Architecture. Table S1 reports the perfor-
mance of the two modules, i.e. relating neighbors in fea-
ture dimension (RNF) and relating neighbors in temporal
dimension (RNT), operated in different orders in the pro-
posed method. The results demonstrate that sequentially
cascading RNF and RNT outperforms other configurations
of these two modules. This superiority can be attributed to
capability of RNF to distinguish similar shots in the same
scene between those from different scenes, making RNT
ease to enhance the similarity between shots, especially
those dissimilar, within the same scene.

Edges of Temporal Graph. To justify the necessity of
temporal edge selection when building temporal graph, we
compare in Table S2 the temporal graph when using Eq. (8)
selecting edge connections or full edge connections be-
tween shots. The results show that ours using Eq. (8) ex-
hibits a substantial performance advantage in all metrics,
underscoring the effectiveness of our customized temporal
graph.

Operation for Aggregating Similarity Table S3
presents the impacts of different operation for aggregating
similarity in Eq. 3. When a weighted sum operation in place
of “max”, it yields a decrease in AP from 64.0% to 62.1%.

Computation costs. Under identical hardware con-
ditions, Table S4 below presents the training/inference
throughput measured in samples per second (Sam./s), num-
ber of training parameters (Par.), and GPU memory costs
per sample (GB/Sam.) for state-of-the-art methods. A
sample corresponds to a time window with a length of
21 shots, equating to 21 nodes in our graph. As can be
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Architecture AP mIoU F1
RNF ∥ RNT 60.4 59.3 55.4
RNT⊕RNF 62.7 59.8 56.4
RNF⊕RNT 64.0 61.2 57.8

Table S1. Impact of NeighborNet architecture. RNF denotes “re-
lating neighbors in feature dimension” module, and RNT denotes
“relating neighbors in temporal dimension” module. ∥ denotes a
parallel operation, and ⊕ represents a series operation as per the
given order.

Temporal Graph AP mIoU F1
Fully Connected 49.8 54.1 49.2
Selectively Connected (Ours) 64.0 61.2 57.8

Table S2. Selectively vs. fully connected temporal Graph.

Similarity Aggregatation AP
Weighted Sum 62.1
Max (Ours) 64.0

Table S3. Impacts of operations of aggregating similarity in Eq. 3.

Method Backbone Train Inference
Sam./s Par. GB/Sam. Sam./s GB/Sam.

BaSSL [6] (ACCV’22) ResNet-50 1.0 43.8 M 34.3 2304.6 0.0013
Ours 1208.3 35.5 M 0.0058 3072.0 0.0012
TranS4mer [5] (CVPR’23) ViT-S/16 2.0 32.0 M 5 32.0 0.36
Ours 2452.5 5.1 M 0.0015 4557.4 0.00057

Table S4. Computation cost compared with prior methods.

seen, our model requires fewer resources in terms of train-
ing/inference throughput, training params, and GPU mem-
ory costs compared to others utilizing the same backbone.

Metric for Reducing Similarity of Shots from Differ-
ent Scenes. As depicted in the Fig. S1, the absence of
the proposed RNS and RRS results in an overlap between
the similarity distributions of shots from the same scene
and different scenes. Conversely, once leveraging RNS and
RRS, the two distributions are distinctly separated.

Dimensionality of Shot Features. Fig. S2 depicts the
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Figure S1. Cosine similarity distributions of shots from the same scene and different scenes in the test set of the MovieScenes dataset.
Left: w/o RNS and RRS; Right: w/ RNS and RRS.
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Figure S2. Impact of dimensionality of input shot features.

impact of different dimensions of shot feature defined in
Sec. 3.2. The initial feature dimension is 2048 output by the
backbone. For dimensions lower than the initial, we utilize
an MLP to transform the original shot features to the target
dimensions. As shown in Fig. S2, AP peaks at 1560 dimen-
sions, while mIoU and F1 scores decline as the dimensions
gradually decrease.

Impact of Hyper-parameters in the self-supervised
transfer learning setting. Fig. S3 shows the impact of
hyper-parameters in the self-supervised transfer leaning
setting. The behaviours of hyper-parameters under self-
supervised transfer learning is consistent with those (shown
in Fig. 7 of our manuscript) under fully supervised learning.

2. Additional Visualizations

The qualitative results presented below are obtained from
the model trained with self-supervised transfer learning.

Detection Results. Fig. S4 shows additional samples of
video scene detection. The results highlight that BaSSL [6]
is susceptible to background changes and shot transitions in
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(a) Sliding window scale l as
defined in Eq. (1).
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(b) Temporal neighbor scale r as
defined in Eq. (7).

59
61
63
65
67
69
71
73

2 3 5 7 9
k

AP mIoU F1

(c) Feature neighbor scale k as
defined in Eq. (1).
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(d) Number of inputting shots N as
defined in Sec. 3.2.

Figure S3. Impact of hyperparameters in the self-supervised trans-
fer learning setting.

adjacent frames, leading to over-segmentation of scenes. In
contrast, our method could address these challenges without
causing scene over-segmentation, which thanks to the abil-
ity of our TCS to enhance the relations between dissimilar
shots in the same scene.

Feature Similarity Maps. Fig. S5 illustrates the corre-
lations among shot features in consecutive scenes. Shot fea-
tures of being input are extracted using the ResNet shot en-
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Figure S4. Visualized comparisons of the proposed method with the previous BaSSL [6]. GT denotes ground-truth scene boundaries for
reference. The border of the same color represents frames from the same scene.
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Figure S5. Visualization of feature similarity graphs at different stages. Shot features are initially extracted using the backbone. As detailed
in Sec. 3.2, semantic neighbor-aware features are produced by the RNF module, while temporal neighbor-aware features are generated by
the RNT module.
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Figure S6. Visualization of failure scene detection. Our model occasionally cannot detect video scenes due to lacking consideration of
audio or artistic information.

coder. Semantic neighbor-aware features defined in Eq. (5)
are produced by the RNF module, and temporal neighbor-
aware features defined in Eq. (9) are output by the RNT
module. As shown in Fig. S5, distinguishing two scenes
solely from original shot features can be challenging due
to the prevalence of similar shots in both scenes. In con-

trast, the semantic neighbor-aware features allows for dis-
tinguishing between scenes as they weaken the relation-
ships between similar shots from different scenes while en-
hancing those between similar shots within the same scene.
More than that, the similarity map derived from tempo-
ral neighbor-aware features exhibits a clearer boundary be-



tween two scenes because our NeighborNet further goes be-
yond semantic neighbor-awareness and strengthens the con-
nections between shots within the same scene.

3. Broader Impact and Limitation
Broader Impact. We propose the NeighborNet that com-
pares multiple neighboring shots across various dimensions
to establish relations between shots. This model can serve
as a valuable reference for tasks that necessitate contextual
comparisons, such as video summarization [3], video high-
light detection [2], and movie trailer generation [8].

Limitation. Although our proposed method excels at de-
tecting video scenes, as shown in Fig. S6, it cannot detect
some video cases because it leaves more factors such as
audio or artistic techniques (montage) unconsidered. This
fact inspires us to explore future research directions that
consider multiple modalities and incorporate artistic tech-
niques.
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