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7. More mathematical details of our method

7.1. Derivation details of PUB

Details for Eq. 5.
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Therefore, the minimization of GJSD can be written as
follows:
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(21)

Details for Eq. 6. Taking into account O, similar to [9],

we have the upper bound for GJSD as:
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For the standard situation where w1 = w2 = ... = wn =
1/N , we further have:
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Details for Eq. 7. The above bound can be further re-
formed as:

Hc(E[P (�(Xn), (Yn))],O)� a
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Derivation details of Eq. 8.

GAim1 =H(P (�(X), (Y) | D))
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Derivation details of Eq. 9. Due to Eq. 8, we want
to maintain �(X) !  (Y) but suppressing  (Y) !

�(X). Thus we want to max�, H(P (�(X)| (Y)),D)
while min�, H(P ( (Y)|�(X)),D). which problem can



be simplified as:
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where the first term is already in GAim2, thus GReg2
should deal with the second term, which is:
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Also, due to the effect of D being alleviated through the
mappings, the above equation is approximated as
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which is GReg2.

Derivation details of Eq. 10. For a Gaussian distribu-
tion N (x;µ,⌃) with D dimension, its entropy is:
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Then Eq. 10 equals:
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Empirical risk. The empirical risk introduced by the
whole model ✓ w.r.t X,Y is determined by a convex loss
function L(✓). Following [39], the empirical risk consider-
ing O is:

R(✓) =

Z
L(✓)dP (✓) +H(E[P (�(Xn), (Yn))])

+DKL(E[P (�(Xn), (Yn))]k O) (31)
�H(P (�(X) |  (Y))) +H(P (�(X))).

Proof of Using  v.s. not using  . Using Jensen’s
inequality, due to Y, (Y) contains the same amount of
useful information as Y, we have:

H(Y) � H( (Y)). (32)

Therefore, we have
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Therefore, for the risk of ✓n :
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where b , DKL(E[P (�(Xn), (Yn))]k O)�H(P (�(X) |
 (Y))) +H(P (�(X))), we have:

supR(✓n ) � supR(✓ ). (36)



Proof of incorporating conditions leads to lower gen-
eralization risk on learning invariant representations.
For the risks of the model having parameters ✓c trained with
using conditions, we have:

supR(✓c) = supmin
�
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using conditions, it has:
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[ H(E[P (�(Xn))]) ]
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we have

supR(✓nc) � supR(✓c). (42)

8. Objective derivation details of many previ-
ous methods.

This section shows how we uniformly simplify the objec-
tives of previous methods.

ERM [14]: The basic method. The basic method
does not focus on minimizing GJSD. Therefore, there are
no terms for Aim 1. For Aim 2 it directly minimize
H(P (�(X),Y)).

DANN [13]: Minimize feature divergences of source
domains. DANN [13] minimizes feature divergences of
source domains adverbially without considering conditions.
Therefore its empirical objective for Aim 1 is

min
�

H(E[P (�(Xn))])� a (43)

For Aim 2 it directly minimizes H(P (�(X),Y)).
CORAL [48]: Minimize the distance between the

second-order statistics of source domains. Since
CORAL [48] only minimizes the second-order distance be-
tween souce feature distributions, its objective can be sum-
marized as:

min
�

H(P (�(X),Y)) +H(P (�(X)))�H(E[P (�(Xn))]).

(44)

By grouping it, CORAL [48] has �H(E[P (�(Xn))]) for
Aim 1 and H(P (�(X),Y)) +H(P (�(X))) for Aim 2.

CIDG [28]: Minimizing the conditioned domain gap.
CIDG [28] tries to learn conditional domain invariant fea-
tures:

min
�

H(E[P (�(Xn),Yn)]). (45)

For Aim 2 it directly minimizes H(P (�(X),Y)).
MDA [16]: Minimizing domain gap compared to the

decision gap. Some previous works, such as MDA [16],
follow the hypothesis that the generalization is guaranteed
while the decision gap is larger than the domain gap. There-
fore, instead of directly minimizing the domain gap, MDA
minimizes the ratio between the domain gap and the deci-
sion gap. The overall objective of MDA can be summarized
as:

min
�

H(P (�(X),Y)) +H(P (�(X)))

+ (H(E[P (�(Xn),Yn)])� E[H(P (�(Xn),Yn))]| {z }
constant

)

� (H(E[P (�(Xn) | Yn)])� E[H(P (�(X) | Y))]| {z }
constant

)

+ E[H(P (�(X),Y))]| {z }
constant

.

(46)

Since the entropy is non-negative and the constants can
be omitted, Eq. 46 is equivalent to:

min
�

H(P (�(X) | Y)) +H(P (�(X)))

+H(E[P (�(Xn),Yn)])�H(E[P (�(X) | Y)])) + a.

(47)

By grouping Eq. 47, we have that for Aim 1 it minimizes
min�H(E[P (�(Xn),Yn)]), and for Aim 2 it minimizes
H(P (�(X) | Y))�H(E[P (�(X) | Y)]))+H(P (�(X))).

MIRO [19], SIMPLE [30]: Using pre-trained models
as O. One feasible way to obtain O is adopting pre-trained
oracle models such as MIRO [19] and SIMPLE [30]. Note
that the pre-trained models are exposed to additional data



besides those provided. Therefore, for Aim 1: they have:

min
�

DKL(P (�(X)|Y )kO)� E[H(P (�(Xn),Yn))]| {z }
constant

.

(48)

Differently, MIRO only uses one pre-trained model, as its
O , O

1; meanwhile, SIMPLE combines K pre-trained
models as the oracle model: O , PK

k=1 vkO
k where

v is the weight vector. For Aim 2 it directly minimizes
H(P (�(X),Y)).

RobustNet [10]. RobustNet employs the instance se-
lective whitening loss, which disentangles domain-specific
and domain-invariant properties from higher-order statis-
tics of the feature representation and selectively suppresses
domain-specific ones. Therefore, it implicitly whitens the
Y-irrelevant features in X. Thus, its objective can be sim-
plified as:

min
�, 

H(P (�(X), (Y)))�H(P (�(X) |  (Y)))

+H(P (�(X))).
(49)

9. Aligning notations between paper and sup-
plementary materials

9.1. More details about Table 1
To better understand, we simplify some notations in Table 1.
We present the simplified notations and their corresponding
origins in Table 9.

9.2. More details about Table 4
For simplification, we uniformly simplified the formulation
of terms from their derivation. The simplified form in Ta-
ble 4 and its original form can be seen in Table 10. Note that
the iAim1 is from CDANN [29], CIDG [28], MDA [16] and
iReg2 is from CORAL [48].

10. Experimental details and parameters
We have conducted 248 experiments in total, including
12 Toy experiments (training 3 objective settings on 4 do-
main settings), 20 Regression experiments in Monocular
depth estimation (training 5 objective settings on 4 domain
settings), 9 Segmentation experiments (training 3 objective
settings on 1 domain settings and verifying on 3 domain set-
tings), 63 Classification experiments (training 1 objective
settings on 5 datasets that has 4, 4, 4, 4, 5 domain settings
for 3 trails), and 144 ablation study experiments (training
12 objective settings on 1 dataset that has 4 domain settings
for 3 trails). We believe that the consistent improvements
yielded by GMDG in these experiments validate the superi-
ority of our GMDG.

Experimental details of these experiments can be found
in the following. Note that we set vA2 = 1 for all experi-
ments.

10.1. Toy experiments: Synthetic regression exper-
imental details.

We explore the efficacy of  by using toy regression exper-
iments with synthetic data.

Datasets. The latent features in all three domains are
added some distributional shifts and used as the first group
in the raw features (denoted as x

1
n, y

1
n where n 2 1, 2, 3

represent which domain it belongs to). Then, some domain-
conditioned transformations are applied to shifted features,
or some pure random noises are used as the second group
in the raw features (denoted as x2

n, y
2
n). Therefore the con-

structed Xn2{1,2,3} = [x1
n, x

2
n], Yn2{1,2,3} = [y1n, y

2
n] both

contain features that dependents on D. Details of each syn-
thetic data are exhibited in Table 11. We generate 10000
samples for training and 100 samples for validation and test-
ing sets.

Parameter settings. All experiments are conducted
with vA1, vR1, vR2 = 0.1.

Experimental settings. For �, , we use three-layer
MLP and one linear layer for regression prediction and
Mean Squared Error (MSE) as the loss. We use the best
model on the validation dataset for testing.

Metric. We use the MSE between the predictions and
the Y of the testing set as the evaluation metric.

10.2. Regression experiments: Monocular depth es-
timation details.

We explore the efficacy of  with GMDG by using toy
monocular depth estimation experiments with NYU Depth
V2 dataset [46].

Datasets. NYU Depth V2 contains images with 480 ⇥

640 resolution with depth values ranging from 0 to 10 me-
ters. We adopt the densely labeled pairs for training and
testing.

Multi-domain construction. To construct multiple do-
mains that fit the problem settings, we split the NYU Depth
V2 dataset into four categories as four domains:
• School: study room, study, student lounge, printer room,

computer lab, classroom.
• Office: reception room, office kitchen, office, nyu office,

conference room.
• Home: playroom, living room, laundry room, kitchen,

indoor balcony, home storage, home office, foyer, dining
room, dinette, bookstore, bedroom, bathroom, basement.

• Commercial:furniture store, exercise room, cafe.
After filtering data samples that are not able to be used, each
domain has 95, 110, 1209, and 35 data pairs that can be used
for training.



Learning domain invariant representations
Aim1: Learning domain invariance Reg1: Integrating prior

DANN min�H(P (�(X) | D)) None
min�H(E[P (�(Xn))]

CDANN, CIDG, MDA min�H(P (�(X),Y | D)) None
min�H(E[P (�(Xn), (Yn))]

Ours min�, H(P (�(X), (Y) | D)) min�, DKL(P (�(X), (Y))kO)
min�, H(E[P (�(XN ), (Yn)])

Maximizing A Posterior between representations and targets
Aim2: Maximizing A Posterior (MAP) Reg2: Suppressing invalid causality

CORAL min�H(P (Y | �(X))) min��H(P (�(X | D))) +H(P (�(X)))
min��H(E[P (�(Xn))]) +H(P (�(X)))

Table 9. Supplemental notations for Table 1. Refined notations and their original formulations are reported. The original formulations are
highlighted as blue.
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Figure 3. Toy experiments: Diagram of constructing the toy dataset.

GAim2 H(P ( (Y) | �(X))) +H(P (Y |  (Y)))
GReg1 DKL(P (�(X),Y | D)kO))
iAim1 H(P (�(X) | D))
GAim1 H(P (�(X),Y) | D)
iReg2 �H(P (�(X),D) +H(P (�(X)))
GReg2 �H(P (�(X) |  (Y))) +H(P (�(X)))

GAim2 H(P ( (Y) | �(X))) +H(P (Y |  (Y)))
GReg1 DKL(E[P (�(Xn),Yn)]kO))
iAim1 H(E[P (�(Xn))])
GAim1 H(E[P (�(Xn),Yn)])
iReg2 �H(E[P (�(Xn))]) +H(P (�(X)))
GReg2 �H(P (�(X) |  (Y))) +H(P (�(X)))

Table 10. Notations for terms in the paper (above) and its derived
formulation (below) in the appendix.

Parameter settings. We follow all the hyperparameter
settings in the VA-DepthNet and set vA1 = 0.001, vR1 =
0.001, vR2 = 0.0001. Note that the backbone is trained us-
ing VA-DepthNet but without the Variational Loss proposed

by VA-DepthNet.
Experimental settings. We use the final saved check-

point for the leave-one-out cross-validation.
Metrics. Please see metric details in VA-DepthNet [32].

10.3. Segmentation experimental details.
We follow the experimental settings of RobustNet for seg-
mentation experiments.

Datasets. There are two groups of datasets: Syn-
thetic datasets and real-world datasets. (1) Synthetic
datasets: GTAV [41] is a large-scale dataset containing
24,966 driving-scene images generated from the Grand
Theft Auto V game engine. SYNTHIA [42] which is com-
posed of photo-realistic synthetic images has 9,400 sam-
ples with a resolution of 960×720. (2) Real-world datasets:
Cityscapes [11] is a large-scale dataset containing high-
resolution urban scene images. Providing 3,450 finely an-
notated images and 20,000 coarsely annotated images, it
collects data from 50 different cities in primarily Germany.
Only the finely annotated set is adopted for our training and
validation. BDD-100K [53] is another real-world dataset
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Table 11. Toy experiments: Synthetic data details for each experiment.

with a resolution of 1280×720. It provides diverse urban
driving scene images from various locations in the US. We
use the 7,000 training and 1,000 validation of the semantic
segmentation task. The images are collected from various
locations in the US. Mapillary is also a real-world dataset
that contains worldwide street-view scenes with 25,000
high-resolution images.

Parameter settings. Specifically, we use all Robust-
Net’s hyper-parameters and set vA1 = 0.0001, vR1 =
0.0001.

10.4. Classification experimental details.

Datasets. We use PACS (4 domains, 9,991 samples,
7 classes) [25], VLCS (4 domains, 10, 729 samples, 5
classes) [12], OfficeHome (4 domains, 15,588 samples, 65
classes) [50], TerraIncognita (TerraInc, 4 domains, 24, 778
samples, 10 classes) [2], and DomainNet (6 domains,

586,575 samples, 345 classes) [38].
Parameter settings. We list the hyper-parameters in Ta-

ble 12 to reproduce our results.
Metric. We employ mean Intersection over Union

(mIoU) as the measurement for the segmentation task.

10.5. Ablation studies experimental details.

Parameter settings. We run each experiment in three trials
with seeds: [0, 1, 2]. Full settings are reported in Table 13.
Especially,

Experimental settings. We use SWAD for all ablation
studies to alleviate the effeteness of hyper-parameters. All
ablation studies share the same hyper-parameters but add
different combinations of terms. CORAL’s [48] objective
focuses on minimizing the learned feature covariance dis-
crepancy between source and target, requiring target data
access and only regards second-order statistics. We adapt



Use ResNet-50 without SWAD v2 v3 v1 lr mult lr dropout WD TR CF
TerraIncognita 0.1 0.1 0.2 12.5 - - - - -
OfficeHome 0.1 0.001 0.1 20.0 3e-5 0.1 1e-6 - -
VLCS 0.01 0.001 0.1 10.0 1e-5 - 1e-6 0.2 50
PACS 0.01 0.01 0.01 25.0 - - - - -
DomainNet 0.1 0.1 0.1 7.5 - - - - 500

Use ResNet-50 with SWAD v2 v3 v1 lr mult CF
TerraIncognita 0.1 0.001 0.01 10.0 -
OfficeHome 0.1 0.1 0.3 10.0 -
VLCS 0.01 0.001 0.1 10.0 50
PACS 0.01 0.001 0.1 20.0 -
DomainNet 0.1 0.1 0.1 7.5 500

Use RegNetY-16GF with and without SWAD v2 v3 v1 lr mult CF
TerraIncognita 0.01 0.01 0.01 2.5 -
OfficeHome 0.01 0.1 0.1 0.1 -
VLCS 0.01 0.01 0.1 2.0 50
PACS 0.01 0.1 0.1 0.1 -
DomainNet 0.1 0.1 0.1 7.5 500

Table 12. Classification experiments: Parameter settings of classification tasks. Notations: WD: weight decay; TR: tolerance ratio; CF:
checkpoint freq. - denotes that for where the default settings are used.

Ablation studies on OfficeHome v2 v3 v1 lr mult use iAim1 use iReg2
Base (ERM) 0.0 0.0 0.0 0.1 False False
Base +iAim1 (DANN) 0.0 0.0 0.1 0.1 True False
Base + GAim1 (CDANN, CIDG) 0.0 0.0 0.1 0.1 False False
Base +iReg2 (CORAL+ ) 0.0 0.1 0.0 0.1 False True
Base + GReg2 0.0 0.1 0.0 0.1 False False
Base + GAim1 + GReg2 (MDA+ ) 0.0 0.1 0.1 0.1 False False
Base + GReg1 (MIRO, SIMPLE) 0.01 0.0 0.0 0.1 False False
Base + GReg1 +iAim1 0.01 0.0 0.1 0.1 False True
Base + GReg1 + GAim1 0.01 0.0 0.1 0.1 False False
Base + GReg1 +iReg2 0.01 0.1 0.0 0.1 True False
Base + GReg1 + GReg2 0.01 0.1 0.0 0.1 False False
Base + GReg1 + GAim1 + GReg2 (Ours) 0.01 0.1 0.1 0.1 False False

Table 13. Ablation studies: Parameter settings of ablation studies. Notations: WD: CF: checkpoint freq. - denotes that for where the
default settings are used.

its approach to minimize feature covariances across seen
domains for a fair comparison.

11. More results
Visualization of toy experiments: Please see the visual-
ization of toy experiments in Figure 4.

Regression results: Monocular depth estimation.
The regression results for each unseen domain of monoc-

ular depth estimation visualization is displayed in Fig-

ure 6, 7.

The Visualization of regression results for unseen do-
mains of models trained with different objective settings are
exhibited in Figure 8, 9.

Segmentation results. The segmentation results for un-
seen samples are displayed in Figure 10.

Classification results. We show the results of
each category for the classification experiments as Ta-
ble 15, 16, 17, 18, 19.



6\QWKHWLF�GDWD

;
<

;
<

/HDUQHG�IHDWXUHV�LQ�ODWHQW�VSDFH

(50 ��ࣦ�ଵ െ �߰� ���ख܂���
$IILQH�WUDQVIRUPDWLRQ�IRU�GRPDLQ�FRQGLWLRQHG�WUDQVIRUPDWLRQV
5DZ

;
<

;
<

6\QWKHWLF�GDWD� /HDUQHG�IHDWXUHV�LQ�ODWHQW�VSDFH

(50 ��ࣦ�ଵ െ �߰� ���ख܂���
6TXDUHG�DQG�FXEHG�WUDQVIRUPDWLRQV�IRU�GRPDLQ�FRQGLWLRQHG�WUDQVIRUPDWLRQV�

5DZ

:
LWK
RX
W�G
RP

DL
Q�
GL
VW
ULE
XW
LR
Q�
VK
LIW

:
LWK
�G
RP

DL
Q�
GL
VW
ULE
XW
LR
Q�
VK
LIW

Figure 4. Toy experiments: Visualization of learned latent repre-
sentations of different methods. Each color represents a domain.

11.1. Other findings and Analysis

What makes a better O. As demonstrated in Eq. 7, O
plays a crucial role in PUB by anchoring a space where the
relationship between X and Y is preserved. Ideally, hav-
ing one O that provides general representations for all seen
and unseen domains leads to the best results, one finding
supported by MIRO and SIMPLE. However, even though
SIMPLE++ combines 283 pre-trained models, achieving
the ‘perfect’ O remains unattained. Therefore, this paper
primarily discusses how our proposed objectives can im-
prove the model performance when a fixed O is provided.

Comparison with MDA: Minimizing domain gap
compared to the decision gap. MDA [16], guided by the
hypothesis “guaranteed generalization only when the deci-
sion gap exceeds the domain gap”, aims to minimize the ra-
tio between the domain gap and the decision gap. This ap-
proach facilitates learning D-independent conditional fea-
tures, enhancing class separability across domains. As Ta-
ble 1 illustrates, MDA’s Reg2 objective can also be inter-
preted as suppressing invalid causality, aligning with our
approach. However, MDA’s implementation requires man-
ual selection of �(X) from the same Y without using  and
GReg2. Our method further relaxes MDA’s assumption, ex-
tending the application of the objective and making it also
applicable to tasks besides classification, such as segmenta-
tion.

Cutting off causality form �(X) !  (Y) may lead
to collapse of the model. We have tried to reversely sup-
press the causality form �(X) !  (Y) instead of causal-
ity form  (Y) ! �(X) for monocular depth estimation in
VA-DepthNet and it causes collapse.

Suppressing invalid causality: Why this design: Our
GMDG introduces a mapping  for Y to relax the static as-
sumption, corroborating more general and practical scenar-
ios. Our empirical findings, as shown in Fig. 5, reveal that
introducing  (Y) without any constraints may not guar-
antee a clear decision margin for classification. Upon ex-
amining our objective in Eq.8 in the main manuscript, we
hypothesize that the effect might result from ‘ (Y) caus-
ing �(X)’, which we term ‘invalid causality’. Thus, we

designed a term to suppress such invalid causality. This
term is derived from the prediction perspective wherein Y
should be only predicted from �(X); hence, �(X) should
not be caused by  (Y). Consider the scenario wherein
Y and  (Y) are absent during prediction - the hypothe-
sized causality from  (Y) to �(X) would disrupt the causal
chain, resulting in an ‘incomplete’ representation of �(X)
then prediction degradation. Hence, it is critical to suppress
 (Y)!�(X) that may occur during joint training. Notably,
the suppression is not symmetric and promotes �(X)!Y.
Intuition: Intuitively, GReg2 further ‘erases’ the redundant
information in �(X) that may be caused by �(Y), which
aims to refine the latent space, yielding better invariant la-
tent features for predicting Y (i.e., larger decision margin
for the unseen domain as highlighted in Fig. 5).

GMDG’s efficiency: We have analyzed the efficiency
of GMDG in Tab. 14. Though theoretically superior in
generality, GMGD may increase computational costs dur-
ing training due to additional loss functions and VAE en-
coders. However, these auxiliary components are discarded
in the inference stage, ensuring their efficiency remains un-
affected. Our confidence in the model’s amenability to ef-
ficiency enhancement through careful design is high, and
such pursuits remain a promising avenue for future work.

Applicability, constraint, and limitations: GMDG is
specifically designed for mDG with accessible P (Y), in
which the model is trained on multiple seen domains and
tested on one unseen domain. This task essentially re-
quires learning the invariance across multi-domains for the
prediction. When used in single-domain generalization or
cases involving novel classes in the unseen domain, GMDG
may not be directly applicable, thus requiring further in-
vestigations. Meanwhile, as a general objective, our novel
GMDG involves additional modules/losses that may incur
extra computational costs during training. We have dis-
cussed these aspects in our main paper, and we would like
to leave them as future work.
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Figure 5. T-SNE map of latent features from classification models that were trained without and with GReg2.

Classification Depth estimation Segmentation
Training Inference Training Inference Training Inference
99.16 49.58 584.44 573.78 209.97 167.34 BaselineFLOPs (G) 124.00 49.58 1543.90 573.78 449.83 167.34 With GMDG
2.94 1.47 64.42 64.27 23.13 22.54 BaselineParameters (M) 4.93 1.47 123.76 64.27 82.48 22.54 With GMDG

Table 14. FLOPs and parameters of baselines without and with GMDG during training and inference.

TerraIncognita Location 100 Location 38 Location 43 Location 46 Avg.

ERM [14] 54.3 42.5 55.6 38.8 47.8
MIRO [19] (use ResNet-50) - - - - 50.4
GMDG (use ResNet-50) 59.8±1.0 45.3±1.7 57.1±1.8 38.2±5 50.1±1.2

ERM + SWAD [6] 55.4 44.9 59.7 39.9 50.0
DIWA [40] 57.2 50.1 60.3 39.8 51.9
MIRO [19] + SWAD [6] (use ResNet-50) - - - - 52.9
GMDG + SWAD (use ResNet-50) 61.2±1.4 48.4±1.6 60.0±0.4 42.5±1.1 53.0±0.7

MIRO [19] (use RegNetY-16GF) - - - - 58.9
GMDG (use RegNetY-16GF) 73.3±3.3 54.7±1.4 67.1±0.3 48.6±6.5 60.7±1.8

MIRO [19] + SWAD [6] (use RegNetY-16GF) - - - - 64.3
GMDG + SWAD (use RegNetY-16GF) 74.3±1.5 59.2±1.2 70.6±1.1 56.0±0.8 65.0±0.2

Table 15. Classification experiments on TerraIncognita: More results of full GMDG for each category.

OfficeHome art clipart product real Avg.

ERM [14] 63.1 51.9 77.2 78.1 67.6
MIRO [19] (use ResNet-50) - - - - 70.5±0.4
GMDG (use ResNet-50) 68.9±0.3 56.2±1.7 79.9±0.6 82.0±0.4 70.7±0.2

ERM + SWAD [6] 66.1 57.7 78.4 80.2 70.6
DIWA [40] 69.2 59 81.7 82.2 72.8
MIRO [19] + SWAD [6] (use ResNet-50) - - - - 72.4±0.1
GMDG + SWAD (use ResNet-50) 68.9±0.6 58.2±0.6 80.4±0.3 82.6±0.4 72.5±0.2

MIRO [19] (use RegNetY-16GF) - - - - 80.4±0.2
GMDG (use RegNetY-16GF) 79.7±1.6 67.7±1.8 87.8±0.8 87.9±0.7 80.8±0.6

MIRO [19] + SWAD [6] (use RegNetY-16GF) - - - - 83.3±0.1
GMDG + SWAD (use RegNetY-16GF) 84.1±0.2 74.3±0.9 89.9±0.4 90.6±0.1 84.7±0.2

Table 16. Classification experiments on OfficeHome: More results of full GMDG for each category.
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Figure 6. Regression results: Monocular depth estimation results between VA-Depth and our GMDG on samples from unseen domains. It
can be seen that better generalization across domains is obtained with GMDG.
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Figure 7. Regression results: Monocular depth estimation results between VA-Depth and our GMDG on samples from unseen domains. It
can be seen that better generalization across domains is obtained with GMDG, continues.
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Figure 8. Regression results: Monocular depth estimation results for unseen domains of models trained with different objective settings. It
can be seen that with the whole GMDG, the model performs the best generalization for all unseen domain settings.
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Figure 9. Regression results: Monocular depth estimation results for unseen domains of models trained with different objective settings,
continues. It can be seen that with the whole GMDG, the model performs the best generalization for all unseen domain settings.
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Figure 10. Segmentation results: Visualizations between RobostNet and our GMDG on samples from unseen domains. It can be seen that
better generalization is obtained with GMDG.



VLCS caltech101 labelme sun09 voc2007 Avg.

ERM [14] 97.7 64.3 73.4 74.6 77.3
MIRO [19] (use ResNet-50) - - - - 79.0±0.0
GMDG (use ResNet-50) 98.3±0.4 65.9±1 73.4±0.8 79.3±1.3 79.2±0.3

ERM + SWAD [6] 98.8 63.3 75.3 79.2 79.1
DIWA [40] 98.9 62.4 73.9 78.9 78.6
MIRO [19] + SWAD [6](use ResNet-50) - - - - 79.6±0.2
GMDG + SWAD (use ResNet-50) 98.9±0.4 63.6±0.2 76.4±0.5 79.5±0.6 79.6±0.1

MIRO [19] (use RegNetY-16GF) - - - - 79.9±0.6
GMDG (use RegNetY-16GF) 97.9±1.3 66.8±2.1 80.8±1 83.9±1.8 82.4±0.6

MIRO [19] + SWAD [6] (use RegNetY-16GF) - - - - 81.7±0.1
GMDG + SWAD (use RegNetY-16GF) 98.4±0.1 65.5±1.4 79.9±0.4 84.9±0.9 82.2±0.3

Table 17. Classification experiments on VLCS: More results of full GMDG for each category.

PACS art painting cartoon photo sketch Avg.

ERM [14] 84.7 80.8 97.2 79.3 84.2
MIRO [19] (use ResNet-50) - - - - 85.4±0.4
GMDG (use ResNet-50) 84.7±1.0 81.7±2.4 97.5±0.4 80.5±1.8 85.6±0.3

ERM + SWAD [6] 89.3 83.4 97.3 82.5 88.1
DIWA [40] 90.6 83.4 98.2 83.8 89.0
MIRO [19] + SWAD [6] (use ResNet-50) - - - - 88.4±0.1
GMDG + SWAD (use ResNet-50) 90.1±0.6 83.9±0.2 97.6±0.5 82.3±0.7 88.4±0.1

MIRO [19] (use RegNetY-16GF) - - - - 97.4±0.2
GMDG (use RegNetY-16GF) 97.5±1.0 97.0±0.2 99.4±0.2 95.2±0.4 97.3±0.1

MIRO [19] + SWAD [6] (use RegNetY-16GF) - - - - 96.8±0.2
GMDG + SWAD (use RegNetY-16GF) 98.3±0.3 98.0±0.1 99.5±0.3 95.3±0.8 97.9±0.0

Table 18. Classification experiments on PACS: More results of full GMDG for each category.

DomainNet clipart info painting quickdraw real sketch Avg.

ERM [14] 50.1 63.0 21.2 63.7 13.9 52.9 44.0
MIRO [19] (use ResNet-50) - - - - - - 44.3±0.2
GMDG (use ResNet-50) 63.4±0.3 22.4±0.4 51.4±0.4 13.4±0.8 64.4±0.3 52.4±0.4 44.6±0.1

ERM + SWAD [6] 53.5 66.0 22.4 65.8 16.1 55.5 46.5
DIWA [40] 55.4 66.2 23.3 68.7 16.5 56.0 47.7
MIRO [19] + SWAD [6] (use ResNet-50) - - - - - - 47.0±0.0
GMDG + SWAD (use ResNet-50) 66.4±0.3 23.8±0.1 54.5±0.3 15.8±0.1 67.5±0.1 55.8±0.0 47.3±0.1

MIRO [19] (use RegNetY-16GF) - - - - - - 53.8±0.1
GMDG (use RegNetY-16GF) 74.0±0.3 39.5±1.5 61.5±0.3 16.3±1.2 73.9±1.5 62.8±2.4 54.6±0.1

MIRO [19] + SWAD [6] (use RegNetY-16GF) - - - - - - 60.7±0.0
GMDG + SWAD (use RegNetY-16GF) 79.0±0.0 46.9±0.4 69.9±0.4 20.7±0.6 81.1±0.3 70.3±0.4 61.3±0.2

Table 19. Classification experiments on DomainNet: More results of full GMDG for each category.


	. Introduction
	. Related work
	. A general multi-Domain generalization objective
	. Theoretical Details
	. Empirical losses derivations

	. Connection to previous methods
	. Experiments
	. Toy experiments on synthetic datasets
	. Regression on benchmark datasets: Monocular depth estimation
	. Segmentation on benchmark datasets
	. Classification on benchmark datasets
	. Ablation studies

	. Conclusion
	. More mathematical details of our method
	. Derivation details of PUB

	. Objective derivation details of many previous methods.
	. Aligning notations between paper and supplementary materials
	. More details about Table 1
	. More details about Table 4

	. Experimental details and parameters
	. Toy experiments: Synthetic regression experimental details.
	. Regression experiments: Monocular depth estimation details.
	. Segmentation experimental details.
	. Classification experimental details.
	. Ablation studies experimental details.

	. More results
	. Other findings and Analysis


