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1. More result of ablation

In this section, we will provide more ablation experimental
results. Firstly, we replaced the Global Fourier block with
Local Fourier block to further validate the effectiveness of
hierarchical information and the importance of global in-
formation. Secondly, we removed the branch exchanging
operation to verify the effectiveness of this operation. As
shown in Tab. 1, when we replaced the Global Fourier block
with Local Fourier block, the metrics declined, indicating
that the global Fourier information cannot be absent in hi-
erarchical information. We can also observe that the model
performance declined when removing the branch exchang-
ing operation. This indicates that the interaction between
the Local Fourier branch and the Global Fourier branch is
important for the fusion process.

We also conduct ablation experiments on different num-
bers of SGLI modules. As shown in Tab. 2, the performance
gradually improved with an increase in the number of SGLI
modules, but it also led to an increase in the number of pa-
rameters. Therefore, we chose five SGLI modules as a com-
promise solution.

Config | Global frequency Branch exchanging | PSNRT SSIMt SAM| ERGAS]
) X 4 42,0545 09707 0.0219  0.8984
i) v X 42.1687 09712 0.0216  0.8874

Ours v 4 422319 09714 0.0215  0.8807

Table 1. Ablation studies comparison on the WorldView-II

datasets. The best and the second best values are highlighted in
bold.

2. More result of experiment for generalization

In this section, we will provide more result of other fusion
tasks including visible and infrared image fusion, and depth
image SR.

*Corresponding author.

Number of SGLI blocks ‘ PSNRT SSIMT SAMJ] ERGAS|
1 409116 0.9641 0.0251 1.0396
41.6499 0.9685 0.0231 0.9469
41.8385 0.9696 0.0225  0.9204
42.0210 0.9705 0.0219  0.9001
422319 0.9714 0.0215  0.8807
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Table 2. Ablation studies comparison on the WorldView-II
datasets. The best and the second best values are highlighted in
bold.

2.1. Datasets and Benchmarks

Visible and infrared image fusion. We perform ex-
tensive experiments on three publicly available datasets:
M3FD [11], RoadScene [21], and TNO [18]. We com-
pare our proposed model with nine state-of-the-art visi-
ble and infrared image fusion methods: DDcGAN [13],
DenseFuse [8], AUIF [24], DIDFuse [23], ReCoNet [5],
SDNet [22], TarDAL [11], U2Fusion [21], and UMFu-
sion [19]. Depth image SR. We utilize three depth image
SR datasets: NYU v2 [16], Middlebury [15], and Lu [12].
We compare our proposed model with eight state-of-the-
art depth image SR methods: GF [4], DGF [20], DJF [9],
DMSG [6], DJFR [10], DSRNet [1], PacNet [17], and
FDKN [7].

2.2. Implementation details

We implement our method with PyTorch on NVIDIA GTX
3090 GPU. In visible and infrared image fusion, we use
the Adam optimizer with 81 = 0.9, 85 = 0.99 to update
our model with a batch size of 8 and learning rate is set to
1 x 10~%. The patch size is set to 128 x 128. To compre-
hensively evaluate the fusion results for visible and infrared
image fusion, we utilize metrics such as mutual information
(MI) [14], visual information fidelity (VIF) [3], and feature
mutual information (FMI) [2], where higher values indicate
better performance. In depth image SR, we use Adam op-
timizer with 81 = 0.9, B2 = 0.99 with batch size of 1 and



Method RoadScene TNO M3FD

MI?t | VIFt | FMIT MIt | VIFt | FMIT MIT | VIFt | FMIT
DDcGAN | 2.6178 | 0.5946 | 0.859 | 1.8470 | 0.6737 | 0.858 | 2.5397 | 0.7684 | 0.836
DenseFuse | 3.1276 | 0.8025 | 0.868 | 2.4018 | 0.7997 | 0.890 | 2.9297 | 0.7621 | 0.863
AUIF 3.1110 | 0.8466 | 0.856 | 2.2714 | 0.8146 | 0.879 | 3.0490 | 0.8192 | 0.845
DIDFuse 3.1840 | 0.8274 | 0.853 | 2.4422 | 0.8286 | 0.863 | 3.0476 | 0.8770 | 0.831
ReCoNet 3.1594 | 0.7956 | 0.858 | 2.4263 | 0.8266 | 0.878 | 3.0495 | 0.8184 | 0.845
SDNet 3.4225 | 0.8207 | 0.863 | 2.1860 | 0.7624 | 0.883 | 3.2315 | 0.6784 | 0.846
TarDAL 3.4640 | 0.7872 | 0.852 | 2.6480 | 0.8601 | 0.881 | 3.1624 | 0.8100 | 0.825
U2Fusion | 2.8110 | 0.7402 | 0.861 | 1.9225 | 0.6878 | 0.879 | 2.7590 | 0.7091 | 0.850
UMFusion | 3.2019 | 0.7913 | 0.866 | 2.2474 | 0.7169 | 0.888 | 3.0871 | 0.7089 | 0.855
Ours 4.8114 | 0.8671 | 0.878 | 4.2646 | 0.9012 | 0.898 | 5.8933 | 0.9261 | 0.908

Table 3. Quantitative comparison of our method with other state-of-the art methods on M3FD,RoadScne, and TNO datasets. The best

values are highlighted in bold.

Method Middlebury Lu NYU v2 Average

x4 | x8 [ x16 | x4 | x8 [ x16 | x4 | x8 | x16 | x4 | x8 | x16
Bicubic | 2.47 | 4.65 | 7.49 | 2.63 | 523 | 8.77 | 471 | 829 | 13.17 | 3.27 | 6.06 | 9.81
GF 324 | 436 | 6.79 | 4.18 | 534 | 8.02 | 5.84 | 7.86 | 12.41 | 442 | 5.85 | 9.07
DGF 1.94 | 336 | 5.81 | 245 | 442 | 7.26 | 3.21 | 592 | 1045 | 2.53 | 4.57 | 7.84
DJF 1.68 | 3.24 | 5.62 | 1.65 | 3.96 | 6.75 | 2.80 | 533 | 946 | 2.04 | 4.18 | 7.28
DMSG 1.88 | 3.45 | 6.28 | 2.30 | 4.17 | 7.22 | 3.02 | 538 | 9.17 | 240 | 4.33 | 7.17
DJFR 1.32 | 3.19 | 5.57 | 1.15 | 3.57 | 6.77 | 2.38 | 494 | 9.18 | 1.62 | 3.90 | 7.17
DSRNet | 1.77 | 3.05 | 496 | 1.77 | 3.10 | 5.11 | 3.00 | 5.16 | 8.41 | 2.18 | 3.77 | 6.16
PacNet 1.32 | 2.62 | 458 | 1.20 | 2.33 | 5.19 | 1.89 | 333 | 6.78 | 1.47 | 2.76 | 5.53
FDKN 1.08 | 2.17 | 450 | 0.82 | 2.10 | 5.05 | 1.86 | 3.58 | 696 | 1.25 | 2.62 | 5.50
Ours | 1.07 | 2.04 | 4.02 | 0.81 | 2.19 | 5.19 | 1.53 | 3.19 | 6.44 | 1.13 | 247 | 5.21

Table 4. Average RMSE performance comparison for scale factors x4, x8 and x16 with bicubic down-sampling. The best values are

highlighted in bold.

learning rate is set to 1 x 10~%. The model’s performance is
evaluated using the root mean squared error (RMSE) as the
default metric.

For the model implementation, PAN image is set to be
infrared image and LRMS is set to be visible image in vis-
ible and infrared image fusion, while in depth image SR,
PAN image is set to be natural image and LRMS is set to be
depth image.

2.3. Comparison

From the Tab. 3 and Tab. 4, it can be observed that our
method achieved metrics that are almost superior to the
SOTA methods on all datasets. Although it did not reach
the optimal performance on the Lu dataset in Tab. 4, it

achieved the highest average performance metric. This fur-
ther demonstrates the generalization ability of our method.
It is worth noting that in this experiment, we only tested
its generalization ability and did not specifically focus on
whether it is the state-of-the-art.

3. More Detailed Description about Dataset

In this section, we will delve into the details of the dataset
of pan-sharpening , visible and infrared image fusion, and
depth image SR .



3.1. Dataset of pan-sharpening

In our experiments, we use three pan-sharpening datasets
including WorldViewll, WorldViewlll, and GaoFen2.
WorldViewll dataset consists of 760 image pairs for train-
ing, and 80 image pairs for testing. WorldViewlII dataset
consists of 2150 image pairs for training, and 200 image
pairs for testing. GaoFen2 dataset consists of 2712 image
pairs for training, and 200 image pairs for testing.

3.2. Dataset of visible and infrared image fusion

In our experiments, we perform extensive experiments on
three publicly available datasets: M3FD, RoadScene, and
TNO. The M3FD dataset consists of 4200 paired infrared
and visible images, with 3900 images designated for train-
ing and 300 images for testing. In order to assess the gener-
alizability of our method, we train our model on the M3FD
dataset, and evaluate it on the RoadScene and TNO datasets.
Since these two datasets do not have a predefined split, we
randomly select 25 image pairs from each dataset for com-
parison purposes.

3.3. Dataset of depth image SR

In our experiments, we utilize three depth image SR
datasets: NYU v2, Middlebury, and Lu. The NYU v2
dataset comprises 1449 RGB-D image pairs, while the Mid-
dlebury dataset consists of 30 RGB-D image pairs and the
Lu dataset contains 6 RGB-D image pairs. For training our
proposed network, we utilize the first 1000 RGB-D image
pairs from the NYU v2 dataset, and then we evaluate the
trained model on the remaining 449 RGB-D image pairs.
To generate the low-resolution depth map, we follow [7]
experimental protocol, which involves applying bicubic op-
eration at different ratios (x4, x8, and x16). We directly test
the trained model on the NYU v2 dataset, as well as on the
additional Middlebury and Lu datasets.

References

[1] Chunle Guo, Chongyi Li, Jichang Guo, Runmin Cong,
Huazhu Fu, and Ping Han. Hierarchical features driven resid-
ual learning for depth map super-resolution. /EEE Transac-
tions on Image Processing, 28(5):2545-2557, 2018. 1

[2] Mohammad Bagher Akbari Haghighat, Ali Aghagolzadeh,
and Hadi Seyedarabi. A non-reference image fusion metric
based on mutual information of image features. Computers
& Electrical Engineering, 37(5):744-756, 2011. 1

[3] Yu Han, Yunze Cai, Yin Cao, and Xiaoming Xu. A new im-
age fusion performance metric based on visual information
fidelity. Information fusion, 14(2):127-135, 2013. 1

[4] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-
tering. IEEE transactions on pattern analysis and machine
intelligence, 35(6):1397-1409, 2012. 1

[5] Zhanbo Huang, Jinyuan Liu, Xin Fan, Risheng Liu, Wei
Zhong, and Zhongxuan Luo. Reconet: Recurrent correc-

[6

—_

(7]

[8

—

,_,
\O
=

(10]

(11]

(12]

[13]

(14]

[15]

[16]

(7]

(18]

tion network for fast and efficient multi-modality image fu-
sion. In European Conference on Computer Vision, pages
539-555. Springer, 2022. 1

Tak-Wai Hui, Chen Change Loy, and Xiaoou Tang. Depth
map super-resolution by deep multi-scale guidance. In Com-
puter Vision—ECCV 2016: 14th European Conference, Am-
sterdam, The Netherlands, October 11-14, 2016, Proceed-
ings, Part III 14, pages 353-369. Springer, 2016. 1
Beomjun Kim, Jean Ponce, and Bumsub Ham. Deformable
kernel networks for joint image filtering. International Jour-
nal of Computer Vision, 129(2):579-600, 2021. 1, 3

Hui Li and Xiao-Jun Wu. Densefuse: A fusion approach to
infrared and visible images. IEEE Transactions on Image
Processing, 28(5):2614-2623, 2018. 1

Yijun Li, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan
Yang. Deep joint image filtering. In Computer Vision—-ECCV
2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part IV 14, pages
154-169. Springer, 2016. 1

Yijun Li, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan
Yang. Joint image filtering with deep convolutional net-
works. IEEE transactions on pattern analysis and machine
intelligence, 41(8):1909-1923, 2019. 1

Jinyuan Liu, Xin Fan, Zhanbo Huang, Guanyao Wu, Risheng
Liu, Wei Zhong, and Zhongxuan Luo. Target-aware dual
adversarial learning and a multi-scenario multi-modality
benchmark to fuse infrared and visible for object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5802-5811, 2022. 1
Si Lu, Xiaofeng Ren, and Feng Liu. Depth enhancement
via low-rank matrix completion. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3390-3397, 2014. 1

Jiayi Ma, Han Xu, Junjun Jiang, Xiaoguang Mei, and Xiao-
Ping Zhang. Ddcgan: A dual-discriminator conditional gen-
erative adversarial network for multi-resolution image fu-
sion. [EEE Transactions on Image Processing, 29:4980—
4995, 2020. 1

Guihong Qu, Dali Zhang, and Pingfan Yan. Information
measure for performance of image fusion. Electronics let-
ters, 38(7):1,2002. 1

Daniel Scharstein and Chris Pal. Learning conditional ran-
dom fields for stereo. In 2007 IEEE conference on computer
vision and pattern recognition, pages 1-8. IEEE, 2007. 1
Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In Computer Vision—-ECCV 2012: 12th Eu-
ropean Conference on Computer Vision, Florence, Italy, Oc-
tober 7-13, 2012, Proceedings, Part V 12, pages 746-760.
Springer, 2012. 1

Hang Su, Varun Jampani, Deqing Sun, Orazio Gallo, Erik
Learned-Miller, and Jan Kautz. Pixel-adaptive convolutional
neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
11166-11175, 2019. 1

Alexander Toet. The tno multiband image data collection.
Data in brief, 15:249-251, 2017. 1



[19]

(20]

(21]

(22]

(23]

[24]

D Wang, J Liu, X Fan, and R Liu. Unsupervised mis-
aligned infrared and visible image fusion via cross-modality
image generation and registration. arxiv 2022. arXiv preprint
arXiv:2205.11876. 1

Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang.
Fast end-to-end trainable guided filter. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1838-1847, 2018. 1

Han Xu, Jiayi Ma, Junjun Jiang, Xiaojie Guo, and Haibin
Ling. U2fusion: A unified unsupervised image fusion net-
work. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(1):502-518, 2020. 1

Hao Zhang and Jiayi Ma. Sdnet: A versatile squeeze-and-
decomposition network for real-time image fusion. Interna-
tional Journal of Computer Vision, 129:2761-2785, 2021. 1
Zixiang Zhao, Shuang Xu, Chunxia Zhang, Junmin Liu,
Pengfei Li, and Jiangshe Zhang. Didfuse: Deep image de-
composition for infrared and visible image fusion. arXiv
preprint arXiv:2003.09210, 2020. 1

Zixiang Zhao, Shuang Xu, Jiangshe Zhang, Chengyang
Liang, Chunxia Zhang, and Junmin Liu. Efficient and model-
based infrared and visible image fusion via algorithm un-
rolling. IEEE Transactions on Circuits and Systems for Video
Technology, 32(3):1186-1196, 2021. 1



Visible Infrared DenseFuse

ReCoNet U2Fusion UMFusion Ours

Figure 1. Qualitative results of different methods. From top to bottom: M3FD, RoadScene, and TNO datasets.
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Figure 2. The result of our approach compared with other methods on real-world full-resolution scenes from the GaoFen?2 dataset.
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