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1. More experiments on parameter sensitivity

Figure 1. left: Parameter sensitivity of the different modules of
task 2 and task 3. right: Incremental performance of varying de-
grees of update limits on important parameters.

We conduct parameter sensitivity experiments on Ima-
geNetR, and the results are shown in Fig. 1. The left graph
illustrates the parameter sensitivity of the second and third
tasks. Similar to the trends observed in task one and two as
shown in the main paper, the parameter sensitivity of dif-
ferent modules in task two and three also exhibits a high
degree of similarity. Therefore, restricting parameter up-
dates based on parameter sensitivity negatively impacts the
learning of new categories. To investigate this phenomenon,
we conduct experiments, as shown in the right graph. It can
be seen that as the restriction on parameter updates in in-
creases, the overall performance decreases.

2. More Ablation Experiments
Adapter dimension and layers insert: As shown in Tab.
1 and 2 left, we further conduct experiments on the spe-
cific position to insert the adapter module on the ImageN-
etR and ImageNetA datasets. We observe that the perfor-
mance is progressively improved with the number of layers
increased. Thus, we insert adapter modules in all 12 lay-
ers in our comparative experiments of various methods. We
also conduct ablation experiments on the middle dimension
in the adapter in Tab. 1 and 2 right. We observe that increas-
ing the dimension has a positive effect on the performance
of the model. Interestingly, setting the middle dimension
to 32 did not result in a significant decrease in performance.
On the other hand, setting it to 256 led to an improvement in
performance but also quadrupled the number of parameters.
To strike a balance between performance and the number of
fine-tuning parameters, we set the middle dimension to 64.

Analysis of margin and scale: We conduct experiments
on the hyper-parameter of the scale and margin in our co-
sine loss as shown in Tab. 5. We discover that appropriately
increasing scale can enhance the performance of the model.

For example, on the ImageNetR dataset, when the scale is
set to 20, the average accuracy is 3.36% higher than when
the value is 10. We also conduct experiments to analyze the
influence of the margin. As shown in Tab. 6, we observe that
different datasets have different appropriate margin values.
For example, on the ImageNetR dataset, we set the margin
to 0.0, and on the CUB200 dataset, we set it to 0.1.

Layers Form Acc Num #Param Acc
1-3 parallel 80.53 32 0.60M 81.98
1-6 parallel 81.63 64 1.19M 82.09
1-12 parallel 81.95 256 4.87M 82.38

Table 1. Experimental results of the inserted layers of the adapter
and the middle dimension.

Different PET methods in the CIL: The experiment
results on CIFAR100 are in the main paper. In the sup-
plementary material, we provide experiments with different
PET methods on ImageNetR as shown in Tab. 7. We can
observe that in the initial sessions, the performance of SSF
surpasses that of the adapter. However, due to the tendency
of SSF to overfit to the current session classes, there is a
significant decline in subsequent incremental sessions and
the adapter performs best in both the accuracy of the last
session and average accuracy. We also provide experiments
on ImageNetA as shown in Tab. 8. We can draw the same
conclusion from ImageNetR.

Layers Form Acc Num #Param Acc
1-3 parallel 65.25 32 0.60M 66.49
1-6 parallel 65.81 64 1.19M 66.85
1-12 parallel 66.67 256 4.87M 67.54

Table 2. Experimental results of the inserted layers of the adapter
and the middle dimension.

Unified classifier retraining vs. Separate local classi-
fier: The experiment results on ImageNetA are in the main
paper. Here we show the accuracy of each session of three
different seeds on ImageNetA as shown in Tab. 9. It can
be seen that retraining the classifier can improve the perfor-
mance by 2% to 3% on three seeds, effectively improving
the performance of the classifier. Furthermore, classifier re-
training with semantic shift estimation can further improve
performance by 2% to 3%. We also show the results on
CUB200 as shown in Tab. 10. The same trend is shown in
this dataset. CA can significantly improve the performance,



and SSCA can align the prototype and further improve per-
formance. The results on ImageNetR are shown in Tab. 11.

Different pre-trained models. We experiment with
pre-trained models (PTMs) with different generalization
abilities on ImageNetR and ImageNetA datasets shown in
Tab. 3. It can be observed that our method generalizes well
to various PTMs. The large-based ViT model can get better
performance.

Different tuning methods with SSCA. We incorporate
classifier alignment with semantic shift estimation into SSF
and prompt tuning shown in Tab. 4. It can be seen that
both the performance of prompt-based and SSF tuning ap-
proaches show significant improvement. However, our pro-
posed method still outperforms them by a large margin.
The results further verify the effectiveness of our proposed
method.

Pre-trained Model ImageNetR ImageNetA
ALast ↑ AAvg ↑ ALast ↑ AAvg ↑

ViT-base 1K 80.15±0.41 83.87±0.26 64.88±1.11 72.68±1.72

ViT-base 21k 79.38±0.59 83.63±0.43 62.43±1.63 70.83±1.63

ViT-large 21k 83.62±0.41 86.70±0.69 68.38±2.25 74.85±1.93

Table 3. Results on different pre-trained models on ImageNetR/A.

Method ImageNetR ImageNetA
ALast ↑ AAvg ↑ ALast ↑ AAvg ↑

SSF 71.84±0.33 79.98±0.79 52.11±0.64 62.34±1.33

+SSCA 75.01±0.31 82.09±0.41 58.94±1.09 67.94±1.06

VPT-deep 38.49±0.13 50.34±1.93 37.39±22.03 46.55±16.69

+SSCA 56.11±3.25 61.11±1.71 47.83±18.75 55.67±14.92

VPT-shallow 58.79±1.07 69.23±4.06 48.34±0.99 56.96±3.45

+SSCA 68.25±2.50 72.40±2.23 54.49±0.76 62.26±2.54

Table 4. Results for different PET methods on ImageNetR/A.

3. More Implementation Details

To mitigate the impact of randomness in the experiments,
we selected three different seeds (1993,1996, and 1997)
to conduct experiments separately and calculate the aver-
age and variance. In experiments involving different PET
methods, we fine-tuned the parameters inserted into the net-
work without unified classifier retraining. For experiments
of adapter dimension and layers insert, we conduct experi-
ments on the ImageNetR dataset and we set the loss margin
to 0.0 and the scale to 20. In the analysis of margin experi-
ments, we set the scale to 20 for all datasets. In the analysis
of scale experiments, we set the scale to 0.0 for all datasets.
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Scale ImageNetR ImageNetA CIFAR100 CUB200
Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑

s=10 73.80 80.84 56.95 66.88 89.49 93.61 86.39 91.61
s=15 77.83 83.36 59.84 69.25 91.02 94.53 88.46 92.57
s=20 79.55 84.20 60.76 69.62 91.62 94.75 88.51 92.83
s=30 78.90 83.30 60.50 68.73 91.21 94.51 88.60 92.64

Table 5. Experimental results of the influence of scale in cosine loss on different datasets.

Margin ImageNetR ImageNetA CIFAR100 CUB200
Last↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑

m = 0 79.55 84.20 60.76 69.62 91.62 94.75 88.13 92.33
m = 0.1 78.38 84.25 63.00 72.13 91.60 94.71 88.46 92.57
m = 0.2 76.48 82.94 62.74 73.18 89.71 93.28 88.38 92.56
m = 0.3 73.90 80.76 62.61 72.46 86.83 91.45 87.57 91.89

Table 6. Experimental results of the influence of margin in cosine loss on different datasets.

PET Method Params Ses.1 Ses.2 Ses.3 Ses.4 Ses.5 Ses.6 Ses.7 Ses.8 Ses.9 Ses.10 Avg↑

SSF [3] 0.2M 94.75 89.28 86.11 82.61 80.19 78.67 77.27 75.4 75.04 72.78 81.21
VPT-deep [2] 0.046M 87.23 64.19 59.16 40.27 39.4 36.6 31.51 33.32 33.79 31.62 45.71

VPT-shallow [2] 0.004M 81.86 73.20 68.81 66.85 64.89 63.81 62.84 62.21 61.35 58.97 66.48
Adapter [1] 1.19M 91.87 88.42 86.51 84.43 82.75 81.51 80.99 80.62 79.75 78.28 83.51

Table 7. Experimental results for baselines with different parameter efficient tuning methods on ImageNetR. We report the overall perfor-
mance of each session and the average performance.

PET Method Params Ses.1 Ses.2 Ses.3 Ses.4 Ses.5 Ses.6 Ses.7 Ses.8 Ses.9 Ses.10 Avg↑

SSF [3] 0.2M 82.86 76.11 67.44 65.62 61.47 58.97 54.33 52.32 51.04 51.28 62.14
VPT-deep [2] 0.046M 61.14 31.67 15.55 15.62 10.11 6.05 4.82 4.17 3.37 3.42 15.92

VPT-shallow [2] 0.004M 80.00 70.00 64.92 60.32 56.84 54.26 52.63 51.52 49.68 48.26 58.84
Adapter 1.19M 82.86 74.72 71.43 67.62 64.68 62.15 59.14 56.89 55.20 55.50 65.02

Table 8. Experimental results for baselines with different parameter efficient tuning methods on ImageNetA. We report the overall perfor-
mance of each session and the average performance.

Seed Method Ses.1 Ses.2 Ses.3 Ses.4 Ses.5 Ses.6 Ses.7 Ses.8 Ses.9 Ses.10 Avg ↑

1993
w/o CA 85.71 81.11 75.84 72.92 68.85 64.21 60.48 60.18 59.07 58.66 68.70
w/ CA 85.71 81.94 77.10 73.07 71.22 68.00 64.14 63.22 60.14 59.91 70.45

w/ SSCA 85.71 83.61 78.57 76.36 73.84 72.00 66.73 65.06 62.37 62.15 72.64

1996
w/o CA 81.99 77.34 71.36 64.74 66.14 63.83 62.54 60.25 60.09 58.39 66.67
w/ CA 81.99 78.06 74.57 67.91 67.15 64.57 64.59 62.62 61.92 62.08 68.55

w/ SSCA 81.99 78.06 74.81 69.78 71.18 67.9 66.43 65 64.2 64.19 70.35

1997
w/o CA 80.29 74.91 69.41 65.23 63.03 61.49 56.89 57.63 57.62 56.68 64.32
w/ CA 80.29 79.09 72 70.22 66.21 64.41 61.46 59.46 60.03 57.34 67.05

w/ SSCA 80.29 80.14 74.35 71.08 69.66 67.12 65.15 63.73 62.44 60.96 69.49

Table 9. Ablation results for unified classifier training and semantic shift estimation on ImageNetA. We report the overall performance of
each session and the average performance.



Seed Method Ses.1 Ses.2 Ses.3 Ses.4 Ses.5 Ses.6 Ses.7 Ses.8 Ses.9 Ses.10 Avg ↑

1993
w/o CA 99.19 95.37 91.37 87.81 85.86 82.49 82.15 80.96 79.09 78.63 86.29
w/ CA 99.19 98.24 93.45 91.62 91.33 88.42 87.69 86.78 86.37 85.50 90.86

w/ SSCA 99.19 98.24 94.64 93.14 93.10 91.45 90.68 90.59 89.71 88.80 92.95

1996
w/o CA 100.00 94.79 91.09 90.02 88.34 85.92 85.59 82.74 80.87 79.05 87.84
w/ CA 100.00 95.83 94.60 92.60 92.00 90.83 90.56 86.84 85.40 85.58 91.42

w/ SSCA 100.00 96.25 96.06 94.96 94.30 93.81 93.32 91.26 90.22 89.10 93.93

1997
w/o CA 96.55 97.20 91.9 87.87 84.92 84.28 82.15 82.1 82.69 78.92 86.86
w/ CA 96.55 97.90 95.8 90.67 90.12 90.29 87.96 87.43 86.98 85.88 90.96

w/ SSCA 96.55 97.67 95.8 92.02 91.25 91.30 89.56 89.5 89.39 88.34 92.14

Table 10. Ablation results for unified classifier training and semantic shift estimation on CUB200. We report the overall performance of 

each session and the average performance.

Seed Method Ses.1 Ses.2 Ses.3 Ses.4 Ses.5 Ses.6 Ses.7 Ses.8 Ses.9 Ses.10 Avg ↑

1993
w/o CA 91.73 88.64 86.14 84.59 82.08 81.32 80.68 80.52 79.67 78.47 83.38
w/ CA 91.73 88.12 86.20 84.51 82.08 81.26 81.32 81.00 79.38 78.02 83.36

w/ SSCA 91.73 88.57 86.72 84.95 82.91 82.19 82.32 81.63 80.43 79.58 84.10

1996
w/o CA 89.55 86.63 85.27 82.45 81.64 80.36 79.56 78.33 78.34 77.40 81.95
w/ CA 89.55 87.59 86.37 83.58 82.15 81.12 79.85 78.81 78.51 77.67 82.52

w/ SSCA 89.55 87.11 86.65 84.04 83.34 82.00 81.51 79.87 79.73 78.72 83.25

1997
w/o CA 91.20 87.90 85.17 82.96 80.57 80.59 79.35 78.14 77.85 77.68 82.14
w/ CA 91.20 88.73 85.52 83.47 81.88 81.02 79.70 79.06 78.42 78.40 82.74

w/ SSCA 91.20 89.00 86.16 83.68 82.40 81.75 80.97 80.63 79.73 79.85 83.54

Table 11. Ablation results for unified classifier training and semantic shift estimation on ImageNetR. We report the overall performance of 

each session and the average performance.
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