
BodyMAP - Jointly Predicting Body Mesh and 3D Applied Pressure Map for
People in Bed

Supplementary Material

Figure 5. Depth and pressure image complement each other. Im-
age of overlaid modalities (third column) depicts the enhanced
context available to the model.

7. Input Modalities

BodyMAP uses as inputs the depth image and the corre-
sponding pressure image for an individual in bed. It jointly
predicts both the body mesh (3D pose & shape) and the
pressure applied on the body, in the form of a 3D pressure
map. As illustrated in Fig. 5, the depth image provides
a top-to-bottom view, and the pressure image provides a
‘bottom-to-up’ view, capturing complementary features of
the body. Using these two visual modalities enhances the
model’s context, allowing it to accurately predict the body
mesh and 3D pressure map, even when the individual is
heavily covered with blankets.

8. BodyMAP

8.1. BodyMAP-PointNet

BodyMAP-PointNet substantially surpasses prior methods
by 25% on both body mesh and 3D pressure map predic-
tion tasks, for in-bed, visually occluded people. Illustrated
in Fig. 3, the model uses uses a ResNet18 [15] and MLP
to predict the SMPL [29] parameters Ψ̂. These parameters
include body shape, joint angles, root-joint translation, and
root-joint rotation: Ψ̂ = [β̂, Θ̂, ŝ, x̂, ŷ]. We use the SMPL
embedding block [19] to obtain the SMPL [29] body mesh.
The model then leverages the proposed Feature Indexing
Module to form features for each vertex of the predicted
mesh. Subsequently, it uses a PointNet [35] model to infer
the 3D pressure map. This new method unifies the design
for jointly predicting body mesh and 3D pressure map. The
feature extractors used in our model, ResNet and PointNet,
are easily replaceable with other modern feature extractors.

Figure 6. BodyMAP-Conv jointly predicts body mesh and 3D ap-
plied pressure map for an individual in bed. The model replaces
the FIM and PointNet components of BodyMAP-PointNet, and
instead predicts the 3D pressure map using an MLP.

8.2. BodyMAP-Conv

We develop a baseline method denoted as BodyMAP-Conv,
depicted in Fig. 6. BodyMAP-Conv replaces FIM and
PointNet with fully connected layers to predict the 3D pres-
sure map jointly with the SMPL parameters. This model
design allows us to evaluate the enhancements provided by
FIM and PointNet for 3D pressure map prediction.

8.3. Training Strategy

We train BodyMAP-PointNet and BodyMAP-Conv to
jointly predict the body mesh and 3D pressure map with
the following loss function:

L = LSMPL + λ1Lv2v + λ2LP3D + λ3Lcontact (3)

Here, LSMPL minimizes the absolute error on SMPL pa-
rameters Ψ̂ and squared error on the 3D joint positions.
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where Nβ = 10 body shape parameters, NΘ = 69 joint
angle parameters, x and y represent global rotation, and Ns

= 24 joint positions in 3D with sj representing each joint po-
sition. Each term is normalized by their respective standard
deviations computed over the entire synthetic dataset. [9].

Lv2v (vertex-to-vertex loss) minimizes the Euclidean er-
ror between the predicted and ground truth vertex positions,
normalized by the standard deviation σv calculated over the
entire synthetic data, and is calculated as:



Lv2v =
1
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Here Nv represents the number of vertices for the body
mesh which is equal to 6890 for SMPL [29] meshes.

LP3D (3D pressure map loss) minimizes the squared er-
ror between predicted and ground truth per-vertex pressure
value, normalized by the standard deviation of ground truth
pressure map σp calculated over the entire synthetic data,
and is modeled as:

LP3D =
1
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Nv∑
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||p̂j − pj ||2 (6)

Lcontact is calculated as a cross-entropy loss between the
predicted and ground truth per-vertex binary contact values,
where the ground truth contact is obtained from all non-zero
elements of ground truth 3D pressure maps.

Lcontact =
1
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Nv∑
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−(yj log(pj) + (1− yj) log(1− pj))

(7)
Here yj represents the ground truth contact and pj rep-
resents the predicted probability of contact value, calcu-
lated for each vertex. σc represents the standard deviation
of ground truth contact calculated over the entire synthetic
data [9].

Hyperparameters: We empirically set λ1 = 0.25, λ2 =
0.1, and λ3 = 0.1 to train the models, BodyMAP-PointNet
and BodyMAP-Conv, with the loss function defined in
Eq. (3)

9. BodyMAP-WS

We introduce BodyMAP-WS, designed to implicitly learn
3D pressure maps without using direct supervision.
BodyMAP-WS leverages a pre-trained body mesh regres-
sor network and trains to predict a 3D pressure map. The
mesh regressor network used in our work is depicted in
Fig. 7(a). Using the mesh estimates, BodyMAP-WS lever-
ages FIM and PointNet to predict the 3D pressure map.
Unlike BodyMAP-PointNet which predicts the 3D pressure
map as a product of the per-vertex pressure and binary con-
tact value, BodyMAP-WS, depicted in Fig. 7(b), directly
predicts the 3D pressure map modeled by the per-vertex
pressure value.

For training, we form a differentiable 2D projection of
the predicted 3D pressure map and align it with the input
pressure image by minimizing loss between the formed pro-
jection and the input pressure image. This alignment allows
the model to learn the correct 3D pressure map without any

supervision with ground truth data. This training methodol-
ogy allows the model to learn from unlabelled data, where
collecting labels can be challenging and costly.

9.1. Training strategy

We pre-train the mesh regressor for BodyMAP-WS with the
following loss function:

L = LSMPL + λ1Lv2v (8)

The mesh regressor model is then frozen and is used to
train BodyMAP-WS with the loss function:

L = LP2D + λ1LPreg (9)

Here, LP2D (2D pressure loss) minimizes the squared er-
ror between the 2D projection of the predicted 3D pressure
map and the input pressure image.

LP2D = ∥p̂− p∥2 (10)

where p is the input pressure image and p̂ is the 2D pro-
jection of the predicted 3D pressure map.

We model LPreg (pressure regularization loss) as a regu-
larization loss to penalize pressure predicted on vertices that
lie above the mattress plane, as these are not in contact with
the mattress.

LPreg = ∥
Nnocv∑
j=1

p̂j∥2 (11)

where pj represents pressure on a vertex not in con-
tact with the mattress, Nnocv represents the number of no-
contact-vertices, i.e. vertices lying above the mattress plane
(Z = 0) and is obtained as:

Vnocv = {V |Vz > 0} (12)

Nnocv = |Vnocv| (13)

Hyperparameters: For pre-training the mesh regressor
we set λ1 = 0.25 in Eq. (8). To train BodyMAP-WS, we set
λ1 = 500 in Eq. (9). These hyperparameter values are set
empirically.

10. Pressure Metrics Details
To evaluate predicted 3D pressure maps, we have intro-
duced two metrics: v2vP 1EA (one edge away) and v2vP
2EA. These metrics calculate the squared error between the
predicted and ground truth 3D pressure at coarser levels.
These coarser 3D pressure maps are formed by setting the
pressure at a vertex as the average of its neighboring ver-
tices. We illustrate the spread of neighboring vertices used
for v2vP 1EA and v2vP 2EA in Fig. 8.



3D Pose Error - MPJPE (mm) ↓ 3D Pressure Distribution Error - v2vP (kPa2) ↓
Network Modalities Uncovered Cover 1 Cover 2 Overall Uncovered Cover 1 Cover 2 Overall

Pyramid Fusion [45] RGB-D-PI-IR 78.80 79.92 80.21 79.64 - - - -
BPBnet [9] D 70.16 76.99 76.49 74.54 2.87 2.88 2.87 2.87
BPWnet [9] D 63.64 72.4 72.04 69.36 2.85 2.85 2.82 2.84

BodyMAP - Conv D 55.7 ± 1.753 64.34 ± 2.099 63.82 ± 2.117 61.29 ± 1.978 2.68 ± 0.019 2.66 ± 0.02 2.63 ± 0.017 2.66 ± 0.018
BodyMAP - Conv D - PI 49.48 ± 0.127 52.9 ± 0.576 53.0 ± 0.521 51.79 ± 0.379 2.59 ± 0.008 2.55 ± 0.007 2.53 ± 0.007 2.56 ± 0.007

BodyMAP - PointNet D - PI 48.77 ± 0.981 51.88 ± 1.142 52.36 ± 1.092 51.01 ± 1.071 2.16 ± 0.035 2.13 ± 0.029 2.12 ± 0.026 2.14 ± 0.030

Table 4. Results for 3D pose error (MPJPE) & 3D pressure map error (v2vP) for the 22 test subjects from SLP dataset, over multiple
blanket conditions - uncovered (no blanket), cover1 (light blanket), cover2 (heavy blanket) and overall (average case). The modalities used
are: depth image (D), pressure image (PI), infrared images (IR) and RGB images. The metrics for BodyMAP models are shown with the
mean and standard deviation computed over 3 random runs.

Figure 7. BodyMAP-WS implicitly learns to predict 3D pressure maps without using direct supervision. (a) The mesh regressor model is
used as a frozen pre-trained model for BodyMAP-WS. (b) BodyMAP-WS leverages FIM and PointNet to directly predict the 3D pressure
map (without predicting per-vertex binary contact like BodyMAP-PointNet).

Figure 8. Smoothing region (shown in green color) of two vertices
for one edge away (1EA) and two edge away (2EA) scenarios.

11. Further Results

BodyMAP surpasses prior methods in both body mesh and
3D pressure map prediction. Tab. 4 presents detailed re-
sults over different blanket thickness configurations, evalu-
ated over the 22 test subjects from the SLP dataset [25, 27].

While BPW [9], the previous state-of-the-art method, ex-
hibits strong performance in body mesh prediction in sce-
narios where the individual is uncovered (uncovered case),
its effectiveness notably diminishes when occlusions from
blankets (cover1 and cover2) are introduced. In contrast,
our methods, BodyMAP-PointNet and BodyMAP-Conv,
when trained on multiple modalities, maintain consistent
performance across all three blanket configurations, show-
casing a significant improvement over BPW [9]. This eval-
uation reinforces the intuition that depth images capture
limited details about the human body when individuals are
covered with blankets. Instead, our approach of leverag-
ing both modalities, with depth images providing the top-

BodyMAP - Feature Indexing Module Ablation 3D Pressure Error (kPa2) ↓

Vertex Location Input Image ResNet Features Global ResNet features v2vP v2vP 1EA v2vP 2EA

- ✓ - - 2.765 1.797 1.256

✓ - - - 2.478 1.552 1.043

- ✓ - ✓ 2.455 1.526 1.033

- ✓ ✓ - 2.369 1.419 0.921

✓ ✓ - - 2.334 1.442 0.969

✓ - - ✓ 2.339 1.429 0.945

✓ - ✓ - 2.205 1.311 0.855

✓ - ✓ ✓ 2.204 1.311 0.857

✓ ✓ - ✓ 2.195 1.315 0.862

✓ ✓ ✓ - 2.164 1.280 0.831

✓ ✓ ✓ ✓ 2.130 1.260 0.822

Table 5. Ablation study of Feature Indexing Module (FIM) and use
of global ResNet features (formed after global average pooling)
for 3D pressure map prediction. These results are evaluated for
BodyMAP-PointNet model trained with depth and pressure im-
ages as input modalities, averaging over all blanket configurations.

down view and 2D pressure images offering a ‘bottom-to-
up’ view, yields robust performance across different blanket
configurations.

Feature Indexing Module improves 3D pressure per-
formance: Tab. 5 showcases the impact of different ap-
proaches to forming mesh features through the proposed
Feature Indexing Module (FIM) and the use of global
ResNet features (formed after global average pooling). The
proposed fusing of vertex locations, accumulated input im-
age and ResNet features (before global average pooling)
through FIM, and global ResNet features, provides a com-
prehensive feature set for the model to learn from and result
in accurate 3D pressure map predictions.

Ablating training components reduces performance:
Ablating the Lv2v and Lcontact loss functions from Eq. (3)
in BodyMAP training results in a performance drop in both



body mesh and 3D pressure map prediction. Tab. 6 show-
cases the outcomes across the test set, where we observe a
performance improvement from predicting 3D contact and
minimizing loss for contact and vertex locations.

We also ablated training-time data augmentations and
observed improvement in results from using random rota-
tion and random erasing augmentations. Tab. 7 outlines
these results.

12. Computational Analysis
We conducted a comparative analysis between BodyMAP-
PointNet, BodyMAP-Conv, and the prior state-of-the-art
method BPW [9], focusing on computational efficiency
metrics including FLOP (total floating-point operations),
parameter count, and inference time. The summarized re-
sults are detailed in Tab. 8.

Parameter count: BPW [9] employs two ResNet34 [15]
models to predict SMPL [29] parameters for body mesh for-
mation, alongside a white-box model and a compact convo-
lutional network to estimate the 2D pressure image. This
multi-model approach results in BPW [9] containing a to-
tal of 42.73 million parameters. In contrast, our models,
BodyMAP-Conv and BodyMAP-PointNet, adopt simpler
architectures with a reduced parameter count compared to
BPW [9].

BodyMAP-Conv utilizes a ResNet18 [15] and fully con-
nected layers to predict jointly the SMPL [29] mesh param-
eters and a pressure value for each vertex, leading to an out-
put size of 6890 for the entire SMPL [29] mesh, resulting in
a total parameter count of 34.03 million.

BodyMAP-PointNet also employs a ResNet18 [15] and
fully connected layers for body mesh parameters and per-
vertex pressure value prediction but optimizes for efficiency
by sharing weights of the fully connected layers across
vertices using the PointNet [35] architecture. This design
choice results in a highly efficient model with a significantly
reduced parameter count of only 13.56 million.

FLOPs: Although BPW [9] uses three separate neural-
network models, it only a predicts 2D pressure image and
not a per-vertex 3D pressure map through the models. This
design choice allows BPW [9] to use a minimal number
of fully connected layers, resulting in the lowest total of
1.25 giga FLOPs. In contrast, both BodyMAP-Conv and
BodyMAP-PointNet predict a 3D pressure map, employing
fully connected layers, resulting in higher total FLOPs.

BodyMAP-Conv utilizes a fully connected layer to pre-
dict a pressure value for each of the 6890 body mesh ver-
tices, resulting in a total of 1.8 giga FLOPs.

BodyMAP-PointNet leverages a PointNet [35] model to
predict the 3D pressure map. This requires the model to
compute mesh features (features for each of the 6890 body
mesh vertices) in many layers of the model, resulting in a
total of 2.26 giga FLOPs. Despite the higher computational

BodyMAP-PointNet loss ablation 3D Pose Error 3D Pressure Map Error
Extra Losses - v2v, contact MPJPE (mm) ↓ v2vP (kPa2) ↓

- 55.34 2.182
✓ 52.63 2.130

Table 6. Ablation study of extra losses, Lv2v (Eq. (5)) and Lcontact

(Eq. (7)), used for training BodyMAP-PointNet. Here the model
is trained with depth and pressure image as input modalities, with
evaluation conducted on the test set from the SLP dataset [25, 27],
averaging over all blanket configuration (uncovered, cover1 &
cover2)

BodyMAP-PointNet Augmentation ablation 3D Pose Error 3D Pressure Map Error
Modality Data Augmentation MPJPE (mm) ↓ v2vP (kPa2) ↓

D - 69.73 2.609
D ✓ 59.44 2.473

D - PI - 60.07 2.277
D - PI ✓ 52.63 2.130

Table 7. Ablation study of data augmentations used for training
BodyMAP-PointNet. The evaluation is conducted on the test set
from the SLP dataset [25, 27], averaging over all blanket configu-
rations (uncovered, cover1 & cover2)

demand during inference, BodyMAP-PointNet’s stream-
lined design results in lower memory requirements, facil-
itating easier scalability for jointly predicting body mesh
and 3D pressure map.

Inference time: BPW [9] approximates the 3D pressure
map by projecting pressure from the predicted 2D pressure
image to the vertices of the predicted body mesh, neces-
sitating vertex-wise iterations and resulting in an inference
time of 3.5168 seconds. In contrast, BodyMAP-Conv and
BodyMAP-PointNet predict the 3D pressure map directly,
leading to significantly reduced inference times.

BodyMAP-Conv utilizes a fully connected layer to pre-
dict the 3D pressure map, resulting in the lowest inference
time of 0.0042 seconds.

Employing the PointNet [35] architecture, BodyMAP-
PointNet directly predicts the 3D pressure map in only
0.0046 seconds, demonstrating comparable inference time
to BodyMAP-Conv.

Analysis: BodyMAP-PointNet demonstrates a substan-
tial 68% reduction in the number of parameters and a 99%
decrease in inference time compared to the prior state-of-
the-art BPW [9]. These computational advantages translate
to simplified scalability and real-time performance, crucial
for implementation and deployment in hospitals and nurs-
ing facilities.

The joint prediction of body mesh and 3D pressure map
for a person in bed by BodyMAP could empower caregivers
with visualization of pressure distribution on the body. The
low inference time required by BodyMAP allows for gen-
erating these visualizations in real-time. This eliminates
the need for caregivers to manually assess pressure infor-
mation, allowing them to prioritize providing care. These
benefits could potentially enhance the pressure injury pre-
vention process.



Network FLOPs (G) ↓ Params (M) ↓ Inference Time (s) ↓
BPW [9] 1.2469 42.7316 3.516813

BodyMAP-Conv 1.8044 34.0252 0.004224
BodyMAP-PointNet 2.2619 13.5580 0.004650

Table 8. Results from model computation comparison. The eval-
uation is computed on a machine using Intel Core i9-13900KF-
3 GHz-24 core CPU processor and NVIDIA GeForce RTX 4090
GPU processor.

Figure 9. Failure cases of BodyMAP. (a) The Model predicts
flipped orientation for legs stemming from inherent body symme-
tries. (b) Predicted mesh interpenetration failure example.

13. Future Work Opportunities

While BodyMAP demonstrates proficient estimation of
body mesh and 3D applied pressure map, its translation
into clinical efficacy requires validation through real-world
studies. Clinical settings inherently differ from training sce-

narios, encompassing variations in mattresses, diverse body
poses, partially elevated or tilted mattresses for actuated
hospital beds, and the presence of additional objects like pil-
lows and medical instruments. It is also crucial to quantify
the benefits derived from the body mesh and 3D pressure
map predictions & visualizations in improving pressure in-
jury prevention in real clinical scenarios.

Additionally, our method encounters occasional false
positives. For instance, in Fig. 9(a), the misalignment of leg
orientation, attributed to inherent body symmetries, leads to
an inaccurate 3D pressure map. Future enhancements may
stem from expanded training datasets.

Furthermore, instances of mesh inter-penetrations can
occur in our predictions. As depicted in Fig. 9(b), the left
arm penetrates the head. Although incorporating loss terms
to mitigate such occurrences is viable, our method currently
leverages a fixed open-hand pose similar to BPW [9], con-
tributing to occasional unnatural orientations.

Similar to BPW [9], our current approach fails to ac-
count for pressure from self-contact. Integrating methods
that consider physics behind self-contact [10, 14, 32] could
potentially augment our method’s performance.

Our proposed BodyMAP-WS model employs an im-
plicit learning strategy, effectively eliminating the need for
ground truth 3D pressure map data. Although BodyMAP-
WS requires a pre-trained mesh model, which traditionally
necessitates 3D ground truth mesh data, our methodology
paves the way for a fully self-supervised model. In this
paradigm, both the body mesh and 3D applied pressure map
could be learned without relying on any 3D labels. This
advancement holds promise for the field, as it opens av-
enues to truly scale up to large-scale unlabeled data col-
lected through real-world systems.

The optimized architecture of BodyMAP has signifi-
cantly reduced inference time, enabling real-time analysis.
This advancement creates opportunities to train models for
predicting body mesh and 3D applied pressure maps on
video data. This expanded capability would allow to cap-
ture richer insights and further improve the pressure ulcer
prevention process.

14. Video Results
We release video results on our project website, visualiz-
ing the body mesh with a 3D pressure map to compare our
method with ground truth and BPW [9]. The videos enable
detailed visual analysis of the predicted pressure along with
the predicted body mesh.

Additionally, we provide more visual results comparing
our method with ground truth and BPW [9] in Fig. 10 &
Fig. 11.



Figure 10. Results of inferring body mesh and 3D applied pressure map from examples in the SLP [25, 27] test set.



Figure 11. More results of inferring body mesh and 3D applied pressure map from examples in the SLP [25, 27] test set.
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