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In the supplementary material, we conduct more experi-
ments to further investigate the effectiveness of our AMU-
Tuning method. Specifically, we first analyze the compu-
tation complexity of AMU-Tuning, and then compare the
MTFi predictor with LP by using various backbone mod-
els. Subsequently, we conduct the analysis on the effect
of hyper-parameters A and p in the AMU-Tuning method.
Finally, we compare different methods to compute the con-
fidence ~ in uncertainty fusion of Eq. (11). Note that all
experiments are conducted on ImageNet-1K.

S1. Analysis on Computation Complexity.

In this section, we compare AMU-Tuning with its coun-
terparts in terms of computation complexity on a single
RTX 3090 GPU, including training time over 500 steps with
batch size of 16384 and number of trainable parameters.
Tab. S1 gives the results under 16-shot setting, where we
can see that AMU-Tuning has the fastest training speed and
the fewest trainable parameters, since AMU-Tuning only
optimizes a lightweight LP. These results verify the effi-
ciency of our AMU-Tuning.

Model Time (s) | Params. (M)]
Tip-Adapter-F [7] 22.30 16.38
CaFo [8] 87.88 49.15
AMU-Tuning (Ours) 6.63 2.05

Table S1. Computational complexity of different methods in terms
of training time (Time) and trainable parameters (Params.).
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S2. Comparison of MTFi with LP Using Dif-
ferent Backbones

In this section, we conduct an in-depth analysis using extra
backbones (i.e., DINO [1] and MAE [4]) to evaluate the
effectiveness of MTFi on ImageNet-1K [3]. Specifically,
Tab. S2 respectively shows the results of linear probing (LP)
and our MTFi predictors with auxiliary features of DINO
and MAE, while apparent that the implementation of MTFi
leads to a remarkable boost in the model’s performance.

Method 1-shot 4-shot 16-shot

MAE [4]+LP 6120 62.76  65.49
MAE + MTFi  61.44 63.32  65.99

DINO [I]+LP 61.62 64.43  68.32
DINO+MTFi 6197 65.05 69.21

Table S2. Comparison(%) of MTFi in extra backbones.

Furthermore, we visualize the loss convergence curves
for the DINO mode with MTFi trained in the 16-shot set-
ting. As shown in Fig. S1 both £y, and /4,x convergence
faster, whlie the individual accuracy (%) of the auxiliary
branch increases from 36.24 to 57.79, and the overall model
accuracy (%) improves from 68.32 to 69.21. The above
results demonstrate that our MTFi can achieve significant
performance improvement while benefitting higher training
efficiency (e.g., DINO).

S3. Effect of Parameter )\

In Eq. (9), we introduce a hyper-parameter A that balance
the effect between £aux and fpysion. In Fig. S2, we examine
the performance of the AMU-Tuning method with 4-shot
and 16-shot on ImageNet-1K under various values of A. It
is evident that the performance of AMU-Tuning method re-
mains stable when A is in the range of 0.2 to 0.6, with fluc-
tuations below 0.05%. Therefore, we generally set A to 0.4
throughout our experiments.
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Figure S1. Comparison of loss and accuracy curves with/without
the MTFi method. (a) is auxiliary loss and accuracy curve,while
(b) is total loss and accuracy curve.
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Figure S2. Comparison on AMU-Tuning with different \.

S4. Effect of Parameter p

In Eq. (10), we introduce a hyper-parameter p to control the
power of uncertainty. In Fig. S2, we examine the perfor-
mance of the AMU model with 16-shot on ImageNet-1K
under various values of p. It is evident that the performance
of AMU performance stable when p is in the range of 0.2 to
0.6. In our experiments, we generally set p to 0.4.

S5. Comparison of Different Uncertainty-
based Fusion Methods

Accroding to the observation in Sec. 3.2.3, we have that the
largest logit value of zero-shot CLIP is consistently high,
when the sample is correctly classified. Therefore, we de-
vise various approaches for calculating the confidence pa-
rameter x. First, we compute the confidence score « based
on the largest logit value directly which formularized as

KMax = Maz1(sg)”, (S1)
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Figure S3. Comparison on AMU-Tuning with different p.
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Figure S4. Comparison(%) of different confidence calculation
methods.

where Maz1(-) computes the largest logit value. Further-
more, we also design a method that simultaneously utilizes
the largest and second largest logit values, as suggested
in [6]. The formula is as follows:

B Maz1(sg) — Max2(sg) p
KTop2 = (abs(Maa:l(so) + Ma:cQ(So))) -

Mazx2(-) computes the second largest logit value. We
also explore a confidence calculation method based on en-
ergy [5], for C classes « formulated as follows:

c  \*
KEnergy = <logZeSS> : (S3)
1=1

We compare different methods in Egs. (S1) to (S3) and
our kurtosis-based confidence in Eq. (10) on ImageNet-
1K with the auxiliary features of MoCov3 [2]. As present



in Fig. S4 several confidence computation methods can lead
to performance improvement while our kurtosis-based ap-
proach achieves the better performance than other com-
pared methods for all cases.
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