
Bilateral Propagation Network for Depth Completion

Supplementary Material

This supplementary material provides additional infor-
mation to complement the main paper. It includes imple-
mentation details of the proposed method in Sec. A, net-
work architecture details in Sec. B, additional training de-
tails in Sec. C, descriptions of the adopted evaluation met-
rics in Sec. D, and further experimental results in Section E.

A. Additional Method Details
A.1. Inverse Projection Implementation

Our method utilizes depth features in both prior encoding
(Sec. 3.2.3) and multi-modal fusion (Sec. 3.3) of the main
paper. These depth features are obtained by inverse project-
ing the depth map into camera space. This inverse projec-
tion technique has been proven beneficial for extracting 3D
cues in a previous study [4]. Specifically, the depth feature
map D is transformed from a single-channel depth map to a
three-channel feature map, with each pixel coordinate (x, y)
represented by (X,Y, Z), and can be written as:

Xx,y = x−cx
fx

Dx,y,

Yx,y =
y−cy
fy

Dx,y,

Zx,y = Dx,y.

(1)

Here, cx, cy, fx, fy are intrinsic parameters of a camera.
Our method employs a coarse-to-fine manner for depth esti-
mation, where depth maps are generated at multiple scales.
Thus we correspondingly adjust the intrinsic parameters
used for depth feature generation at different scales. Spe-
cially, for a scale s.
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A.2. Image Encoding Implementation

The proposed bilateral propagation module is arranged in
a multi-scale scheme, with prior encodings from the corre-
sponding resolution. The image encoding I in scale s can
be written as:

Is =

{
C([Is,D([Fs+1,Ds+1])]), 0 ≤ s < 5,

Is, s = 5.
(3)

Here, for the lowest resolution with s = 5, we directly adopt
the image feature Is as image encoding. Otherwise, to make
image encoding representative, we concatenate the multi-
modal fused feature Fs+1 with depth feature Ds+1 in scale
s + 1. The depth feature Ds+1 is achieved by inverse pro-
jecting estimated depth Ds+1 to camera space. Then we

utilize deconvolution operation D to upsample the concate-
nated feature map to scale s. Finally, we concatenate the
upsampled feature with Is, and adopt an extra convolution
operation C to produce the image encoding Is.

A.3. Weighted Pooling Implementation

As explained in Sec. 3.2.3 of the main paper, we employ
weighted pooling to downsample the sparse depth map. For
a pixel i at under scale s, the downsampled sparse depth
map can be represented as:

Ss
i =

∑
j=Ns(i)

ws
jSj∑

j=Ns(i)

ws
j I(Sj) + ϵ

, (4)

The weight map w is estimated from image content and gen-
erated using an exponential layer to ensure positivity. Thus,
Eq. (4) can be explicitly formalized as
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eŵ
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s
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, (5)

where, ŵ is the generated weight map before exponential
transform. Directly implementing Eq. (5) may have numer-
ical risk on weights generation and gradients calculation. In
practice, we adopt an equivalent transformation that
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Here, by reducing the maximum value in Ns(i) for each
pixel j, w̌s

j is less equal than 0, avoiding the potential nu-
merical stability issue in implementation.

B. Network Architecture
The overview of our BP-Net is depicted in Fig. 2 of the
main paper. We show the detailed architecture in Tab. 1 with
images of 320× 256 as input. Here, symbols are consistent
with the main paper, e.g. D′5 denotes the propagated depth
map from bilateral propagation module in scale 5. Note that
only main operators are listed in this table, and some trivial
operations, e.g. converting S4 to S4 by inverse projection,
are omitted for clarity.



Output Input Operator Output Size
I0 I Basic2D + ResBlock ×2 ( 32, 256, 320)
I1 I0 ResBlock ×2 ( 64, 128, 160)
I2 I1 ResBlock ×2 (128, 64, 80)
I3 I2 ResBlock ×2 (256, 32, 40)
I4 I3 ResBlock ×2 (256, 16, 20)
I5 I4 ResBlock ×2 (256, 8, 10)
S0 S Identity ( 1, 256, 320)
S1 I1, S Weighted Pooling ( 1, 128, 160)
S2 I2, S Weighted Pooling ( 1, 64, 80)
S3 I3, S Weighted Pooling ( 1, 32, 40)
S4 I4, S Weighted Pooling ( 1, 16, 20)
S5 I5, S Weighted Pooling ( 1, 8, 10)
I5 I5 Identity (256, 8, 10)

D′5 I5,S5,O5 Pre.
(Linear + BN + GeLU) ×4

( 1, 8, 10)

F5 I5,S5 MF.
Basic2D + ResBlock ×2× 1

(256, 8, 10)

D′′5 F5, D′5 Conv + Add ( 1, 8, 10)

D5 S5, D′′5 Post.
Conv ×3× 2

( 1, 8, 10)

I4 I4,F5, D5 Deconv + Conv (256, 16, 20)

D′4 I4,S4,O4 Pre.
(Linear + BN + GeLU) ×4

( 1, 16, 20)

F4 I4,S4 MF.
Basic2D + ResBlock ×2× 2

(256, 16, 20)

D′′4 F4, D′4 Conv + Add ( 1, 16, 20)

D4 S4, D′′4 Post.
Conv ×3× 4

( 1, 16, 20)

I3 I3,F4, D4 Deconv + Conv (256, 32, 40)

D′3 I3,S3,O3 Pre.
(Linear + BN + GeLU) ×4

( 1, 32, 40)

F3 I3,S3 MF.
Basic2D + ResBlock ×2× 3

(256, 32, 40)

D′′3 F3, D′3 Conv + Add ( 1, 32, 40)

D3 S3, D′′3 Post.
Conv ×3× 6

( 1, 32, 40)

I2 I2,F3, D3 Deconv + Conv (128, 64, 80)

D′2 I2,S2,O2 Pre.
(Linear + BN + GeLU) ×4

( 1, 64, 80)

F2 I2,S2 MF.
Basic2D + ResBlock ×2× 4

(128, 64, 80)

D′′2 F2, D′2 Conv + Add ( 1, 64, 80)

D2 S2, D′′2 Post.
Conv ×3× 8

( 1, 64, 80)

I1 I1,F2, D2 Deconv + Conv ( 64, 128, 160)

D′1 I1,S1,O1 Pre.
(Linear + BN + GeLU) ×4

( 1, 128, 160)

F1 I1,S1 MF.
Basic2D + ResBlock ×2× 5

( 64, 128, 160)

D′′1 F1, D′1 Conv + Add ( 1, 128, 160)

D1 S1, D′′1 Post.
Conv ×3× 10

( 1, 128, 160)

I0 I0,F1, D1 Deconv + Conv ( 32, 256, 320)

D′0 I0,S0,O0 Pre.
(Linear + BN + GeLU) ×4

( 1, 256, 320)

F0 I0,S0 MF.
Basic2D + ResBlock ×2× 6

( 32, 256, 320)

D′′0 F0, D′0 Conv + Add ( 1, 256, 320)

D0 S0, D′′0 Post.
Conv ×3× 12

( 1, 256, 320)

Table 1. Detailed Architecture of BP-Net.

C. Additional Training Details
When training on KITTI dataset, we randomly crop im-
age to 256 × 1216 for training. Following previous
works [11, 15], we adopt random horizontal flip, color jit-
ter, and normalization as data augmentation. When training
on NYUv2 dataset, we follow data augmentation in previ-
ous works [9, 15], including random horizontal flip, random
crop, random rotation, random resize, color jitter and nor-
malization. We apply data augmentation on color image and
sparse depth map, and adjust the camera intrinsic parame-
ters correspondingly.

D. Details on Evaluation Metrics
We verify our method on both indoor and outdoor scenes
with standard evaluation metrics. For indoor scene, root
mean squared error (RMSE), mean absolute relative error
(REL), and δθ are chosen as evaluation metrics. For out-
door scene, the standard evaluation metrics are root mean
squared error (RMSE), mean absolute error (MAE), root
mean squared error of the inverse depth (iRMSE), and mean
absolute error of the inverse depth (iMAE). These evalua-
tion metrics are firstly calculated on each sample and then
averaged among samples. And for each sample, they can be
written as:
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Here, Pv is the set of pixels with valid ground truth, and
n = |Pv| is the size of the set.

E. Additional Experimental Results
Due to space limitation, we only show limited comparison
results in Tab. 1 and Fig. 5 of the main paper. Here, we
list more performance evaluation on outdoor scene and in-
door scene in Tab. 2 and Tab. 3 respectively. We also show
more qualitative results on outdoor scene and indoor scene
in Fig. 1 and Fig. 2 respectively.
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Figure 1. Additional qualitative results on KITTI dataset.
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