
A. Appendix Overview

This supplementary section delves deeper into model
performance on unimodal generation tasks, the training
methodologies, model details, and experimental setups, as
well as the construction of datasets discussed in the main
paper. The primary aim is to augment the comprehen-
sion of diverse multimodal in-context generation scenarios.
Moreover, we discuss the potential biases of our model and
datasets.
Table 6. Left: COCO-caption FID scores for text-to-image. Right:
COCO image captioning. Note that CoDi and SCD-Net that are
marked * are based on diffusion models.

Method FID #
CogView [6] 27.10
Stable Diffusion-2.1 [27] 11.1
CoDi [32] 11.26
Next-GPT [40] 11.28

CoDi-2 10.96

Model B@4 METEOR CIDEr

ClipCap [22] 32.15 27.1 108.35
BLIP2 [17] 43.7 - 145.8
CoDi* [32] 40.2 31.0 149.9
Next-GPT [40] 44.3 32.9 156.7

CoDi-2 45.2 32.8 161.0

Table 7. Top: AudioCaps audio captioning scores comparison.
Bottom: The comparison between our audio diffuser and baseline
TTA generation models on AudioCaps test set.

Model SPIDEr CIDEr SPICE

AudioCaps [12] 0.369 0.593 0.144
AL-MixGen [3] 0.466 0.755 0.177
CoDi [32] 0.480 0.789 0.182
Next-GPT [40] 0.521 0.802 -

CoDi-2 0.531 0.806 0.189

Model KL # FAD # OVL " REL "
DiffSound [41] 2.52 7.75 45.00 43.83
CoDi [32] 1.40 1.80 66.87 67.60
AudioLDM2 [19] 0.98 1.42 3.89 3.87

CoDi-2 0.98 1.40 3.85 3.90

Table 8. MSRVTT video captioning scores comparison.

Model B@4 METEOR CIDEr

ORG-TRL [47] 43.6 28.8 50.9
MV-GPT [30] 48.9 38.7 60.0

GIT [36] 54.8 33.1 75.9
CoDi [32] 52.1 32.5 74.4

Next-GPT [40] 58.4 38.5 -

CoDi-2 58.9 39.8 82.2

B. Unimodal Generation Evaluation

We further qualitatively evaluate the synthesis quality of
text, image, audio, and video (multiple frames) with sin-
gle modality as inputs. In Table 6, CoDi-2 achieves SOTA
or near SOTA performance on text-to-image generation and
image captioning. In Table 7, CoDi-2 achieves SOTA on
audio captioning and text-to-audio generation. CoDi-2 can
also perform video captioning and with very competitive
near SOTA performance as revealed by Table 8.

C. Experiment Setups

C.1. Model Setups

To effectively condition the image diffusion model, we em-
ploy negative prompts as cross-attention conditions and uti-
lize MLLM-generated features for embedding guidance [5].
The negative prompts used for image generation include:
‘worst quality, normal quality, low quality, low res, blurry,

watermark, logo, banner, extra digits, cropped, jpeg arti-
facts, signature, username, error, sketch, duplicate, ugly,
monochrome, horror, geometry, mutation, disgusting’. For
audio, the negative prompts are: distorted, muffled, static
noise, background noise, interference, echo, low volume,
inaudible, drowned out, screeching, piercing, off-key, out
of tune, discordant, interrupted, choppy, glitches, overlap-
ping voices, jumbled, incoherent, repetitive, monotonous,
tedious, harsh, grating, abrasive, unbalanced, erratic levels,
fluctuating volume, hissing. These negative prompts func-
tion as unconditioned input guidance, serving to enhance
the quality of both the image and generated features.

C.2. Training Pipelines

The training pipeline involves simultaneous text, image, and
audio generation via diffusion. To avoid the cumbersome
and inefficient aspects of this multitasking approach, espe-
cially concerning model I/O, we alternate training phases
between text, audio, and image generation. We apply
LoRa [10] with a rank of 128 for fine-tuning the model. The
fine-tuning process focuses only on the LoRa weights and
the projection layers that map modality encoders into the
LLM input space, as well as the decoder layer that projects
LLM-generated features into the diffusion input space.

D. Extended Details of Multimodal In-Context

This section presents more details on the generation process
in multimodal in-context generation datasets.

D.1. GPT-Generated Prompts

We crafted 100 distinct prompt templates for each task type,
including instructional editing, multimodal paired datasets,
and constructed in-context multimodal generation datasets.
For instance, in instructional editing, prompts like ‘Given
the image [Image0], transform it into Van Gogh style’,
or ‘Presented with the visual [Image0], convert it into
Van Gogh style’ are used. In multimodal paired datasets,
we utilize prompts for text-to-image or audio tasks like,
‘Generate an image based on the instruction: a cat on a
couch’, or ‘Produce audio of a person talking’. For cap-
tioning image or audio, examples include ‘Generate a cap-
tion for this image: [Image0]’ or ‘Given [Audio0],
produce its description’. In exemplar learning, a typical
prompt is ‘Learn the transformation between [Image0]
and [Image1], and apply it to [Image2]’. For image
composition, prompts like ‘Create an image according to
the description, combining [Image0] with [Image1]’
are used. Each task type includes 100 uniquely generated
prompt prototypes, which are sampled uniformly during the
data pipeline in training.

For training the model: we use 32 NVIDIA A100 to train
the model for 5 days. The input sequence length is capped
at 1024 for all batches. The minimum memory to fit model



training will be 48GB (without partitioning the model). For
inference: the I/O will be around 500ms and requires a min-
imum memory of 16GB for an input sequence of 128 with
16 floating point.

D.2. Addressing the Discrepancy Between Datasets

and Practical Applications

In assembling our research, we have meticulously gathered
or integrated a vast array of datasets from various sources.
Despite this extensive collection, it is notable that several
applications or use-cases remain insufficiently represented
within our training datasets. A case in point is visual con-
cept learning, which, although not extensively featured in
our training data, is an area where our model excels. Over-
all, the architecture of our model and the design of our tasks
are strategically formulated to leverage the innate in-context
capabilities of large language models. This approach is
complemented by the use of diverse, in-context, and in-
terleaved datasets, sourced from an array of open-domain
materials, thereby enhancing the model’s applicability and
versatility in addressing a broader spectrum of real-world
scenarios.

E. Biases

The model, built upon the instruction-tuned LLM (Llama
2) for a broad range of tasks, has been exposed to various
instructional styles. CoDi-2, based on CoDi-1, does not re-
quire its instructions to be overly descriptive. However, it’s
important to note potential biases in our datasets. Firstly,
there is a selection bias: our datasets predominantly fea-
ture content from AIGC editing, which tends to emphasize
personalized, stylistic, and aesthetic elements. Secondly,
there’s a language bias: the datasets include images accom-
panied by English text, optimizing for English’s linguistic
structure. This may limit the model’s effectiveness in adapt-
ing to other languages.

Moreover, our model similar to other language models
might not handle well adversarial inputs where there is a
long tail distribution of modality features (like image/audio)
and text, for instance, an image feature vector place at the
end of a very long input sequence.
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