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In this supplementary material, we delve into additional
details about the network architectures in Sec. 1. Sub-
sequently, we elaborate on collecting the DPHM-Kinect
dataset in Sec. 2. Following that, we provide a com-
prehensive explanation for the implementation of DPHMs
for depth-based tracking in Sec. 3. Moving forward, we
showcase the results of unconditional head generation in
Sec. 4. Finally, we present supplementary comparisons
against state-of-the-art head tracking methods in Sec. 5, de-
tailed results of the robustness analysis in Sec. 6, along with
some further discussions in Sec. 7.

1. Network Architectures
1.1. Modified NPHMs

In our DPHMs, we utilized a modified version of the Neu-
ral Parametric Head Models (NPHMs) [3, 4] to learn over-
parametrized latents from high-resolution head scans in the
NPHMs dataset [3]. Specifically, we replaced the forward
deformation network with the backward deformation net-
work, enabling topology changes during expression track-
ing. The network architecture of the modified Neural Para-
metric Head Models is illustrated in Fig. 1.

We represent the human head geometry by a volumet-
ric signed distance field decoded from two disentangled la-
tents: the identity latent zid and the expression latent zex.
The zid is the concatenation of a global latent zidglo and lo-
cal latents zid1 , ..., zidK . zidglo is used to estimate K = 39
pre-defined anchor positions on a human head through a
small MLPanc. Each local identity latent zidk is used to
describe the head geometries around the kth anchor. To
be specific, we define K = 2Ksym + Kusym facial an-
chors, denoted as a ∈ RK×3. Ksym anchors are on the
left face, mirrored to form the other Ksym anchors. Kusym

anchors are positioned in the middle of the face, shared by
both the left and right sides. To predict the SDF value of
a point p ∈ R3 within the expression space, we concate-
nate it with the identity latent zid and expression latent zex.
The resulting feature is then passed through the backward
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Figure 1. The network architecture of our modified Neural Para-
metric Head Models based on backward deformations.

deformation decoder Fex, which warps p to p′ ∈ R5 in
the canonical space. It is important to note that p′ includes
two hyper-dimensions [8] to model topological changes un-
der different expressions, as continuous deformation fields
alone may struggle with such changes. Then, we feed zid

and p′ into the canonical identity decoder Fid to obtain its
SDF prediction. The Fid is implemented using an ensemble
of smaller local Multi-Layer Perceptron (MLP)-based net-
works, each responsible for a local region centered around
an anchor. For the kth local region of facial anchor, we
feed the corresponding local latent vector zidk , along with
the global latent vector zidglo into an SDF decoder MLPθk

with learnable weights θk:

fk(p, z
id
k , zidglo) = MLPθk([p− ak, z

id
k , zglo]). (1)

To exploit facial symmetry, we share the network parame-
ters and mirror the coordinates for each pair (k, k∗) of sym-
metric regions:

fk∗(p, zidk∗ , zidglo) = MLPθk([flip(p−ak), z
id
k , zglo]). (2)

Finally, we can composite all local fields fk into a global
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field:

Fid(p) =

K∑
k=1

ωk(p,ak)fk(p, z
id
k , zidglo). (3)

The blending weights are calculated by a Gaussian kernel
based on the Euclidean distance between the query point p
and ak.

ω
′

k(p,ak) =

{
exp

{
−∥p−ak∥2

2σ

}
, k > 0

c, k = 0

ωk(p,ak) =
ω

′

k(p,ak)∑
k′ ω

′
k(p,ak)

(4)

We use a fixed isotropic kernel with standard deviation σ
and a constant response c for f0. The global identity latent
zidglo has the dimension dglo = 64, and each local iden-
tity latent zidk is of dimension dloc = 32. Therefore, the
total dimension of zid is (K + 1) ∗ dloc + dglo = 1344.
The backward deformation decoder Fex is implemented by
a six-layer MLP with a hidden dimension of 512. Each
MLPθk for local SDF field prediction has four layers with
a hidden size of 200. The anchor prediction MLP has three
layers with a hidden size of 128. To blend the ensemble of
local SDF fields, we use σ = 0.1 and c = exp−0.2/σ2

.

1.2. Denoiser networks.
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Figure 2. The denoiser network of our identity and expression
latent diffusion models.

The identity and expression diffusion models are con-
structed using UNet-1D [9] architecture with incorporated
attention layers [10], following DDPM [5]. We analogously
treat the identity and expression latents as sequences of 1D
scalar features, with the only difference being the sequence
length, which is equal to the latent feature dimension. Fig. 2
illustrates the detailed network architecture, which has an
encoder of 4 downsampling blocks and a decoder of 4 up-
sampling blocks. The encoder progressively increases the
feature dimension from 1 to 64, 128, 256, and 512, while
simultaneously reducing the sequence length by 2. The de-
coder follows the opposite pattern, reducing the feature di-
mension and doubling the sequence length.

2. DPHM-Kinect dataset
The monocular RGBD sequences of our DPHM-Kinect
dataset are collected from different skin tones and eth-
nicities. After obtaining consent from each attendee, we
recorded five types of head motion sequences: ’ smile and
laugh,’ ’eyeblinks,’ ’fast-talking,’ ’random facial expres-
sions,’ and ’mouth movements.’ The recording framerate
is 16fps. Each motion sequence lasts 6-10s, thus containing
96-160 frames. During data capture, they sit in front of the
Kinect Azure sensor at a 15-40cm distance. The examples
of these motion types from different attendees are depicted
in Fig. 3.

3. Implementation Details

Proprocessing. We begin by eliminating background pix-
els from depth maps using a threshold of dmax = 0.6m.
Subsequently, bilateral smoothing is applied to the depth
maps. Following this, surface normals are computed using
the cross-product of derivatives along the x and y directions.
Next, the depth and normal maps are lifted into 3D space,
resulting in oriented partial point clouds. Finally, we crop
out the points within the head region as the input.
Rigid registration. Prior to non-rigid tracking, we need to
obtain the rigid transformation parameters that convert the
provided scan from the camera coordinate system to that
of DPHMs. Since the coordinate system of DPHMs aligns
with the FLAME space [7], we opt to perform FLAME fit-
ting. This includes the optimization of identity, expression,
and pose parameters, as well as scale, rotation, and transla-
tion parameters.
Non-rigid tracking. With the rigid alignment serving as
initialization, our method optimizes the identity and expres-
sion latents for depth-based head tracking, simultaneously
fine-tuning the rigid parameters. Our non-rigid tracking
comprises three phases: ’identity fitting’, ’expression fit-
ting’, and ’joint finetuning’. In the first phase of identity
fitting, we optimize the identity latent zid and expression la-
tent zex1 for the first frame. In the expression fitting, we fix
the identity latent and optimize the expression latent frame
by frame. The optimization result zexi−1 of the last frame
is used as initialization for the expression latent of the next
frame zexi . In the joint fine-tuning stage, we finetune the
identity latent zid, all expression latents zex1:N , as well as the
rigid transformation parameters for better alignments.

4. Unconditional Generation of DPHMs
4.1. Identity Generation

We present the randomly sampled results of our uncondi-
tional identity diffusion in Figure 4. Our approach demon-
strates the ability to generate high-quality head avatars with
diverse hairstyles.
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Figure 3. Example sequences of our DPHM-Kinect dataset.
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Figure 4. Unconditional sampling results of identity parametric diffusion model. Our approach can generate high-quality head avatars with
diverse hairstyles.
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Figure 5. Unconditional sampling results of expression parametric diffusion model. The first column presents the canonical identity geom-
etry with the neutral expression, i.e., zero expression latent vector. Our method can generate a variety of plausible complex expressions.
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4.2. Expression Generation

In Figure 5, we present randomly sampled expressions for
given head identities under the neutral expression with a
closed mouth. Our expression parametric latent diffusion
demonstrates the capability to generate various complicated
facial expressions.

5. Additional Comparisons
5.1. Additional comparisons on the DPHM-Kinect

dataset

In Figure 6, we visualize additional comparisons on the
monocular depth sequences from our DPHM-Kinect bench-
mark.

5.2. Additional comparisons on the Multi-view
Video dataset

In Figure 7, we provide more qualitative comparisons on the
single-view depth sequences reconstructed from the multi-
view videos of NerSemble [6].

5.3. Evaluations on Unobserved Regions

During evaluations, we use partial depth scans used for test-
time optimization as the target to calculate metrics. For
DPHM-Kinect sequences, we do not have the ground truth
of dynamic head scans. Thus, we can only use the single-
view Kinect depth scans for evaluation. To better evaluate
the reconstruction of unobserved regions, we conduct addi-
tional comparisons on the NerSemble [6] dataset by only us-
ing single-view depth videos as input during optimization,
while using more complete scans from multi-view depths as
targets during evaluation. In Tab. 1, our method consistently
outperforms existing methods in all metrics, which further
confirms the effectiveness of our approach in reconstructing
more accurate unobserved geometries.

Method FLAME ImFace ImFace* ImAvatar NPHM Ours

ℓ2 2.947 9.471 3.065 3.255 1.024 0.894
NC 69.50 78.74 84.36 78.13 88.07 89.02
RC 24.21 10.79 31.86 16.23 85.88 91.02
RC2 55.15 22.11 63.29 56.63 97.10 97.99

Table 1. Head tracking reconstructed from single-view depth
scans. The results are evaluated on multi-view depth scans.

5.4. Comparison with Template-based Non-rigid
Registration Method.

Additionally, we include a classic template-based non-
rigid registration method, NICP [1], into our compar-
isons. We re-implement NICP using a template mesh from
FLAME [7] to obtain mesh deformations that align with

depth scans. We evaluate against NICP using the DPHM-
Kinect dataset, which contains more challenging expres-
sions compared to VOCA [2]. As illustrated in Fig. 8, NICP
cannot recover plausible identities with hair and correct ex-
pressions because it does not have effective priors to handle
imperfect observations of noisy and partial scans. It also
cannot perform expression transfer, without the disentan-
glement of identity and expression. The quantitative com-
parisons presented in Tab. 2 demonstrate the superiority of
our approach again.

Metric ℓ2 ↓ NC ↑ RC ↑ RC2 ↑

NICP 3.926 81.47 32.32 70.50
Ours 1.465 86.80 70.79 90.98

Table 2. Quantitative comparisons against NICP on the DPHM-
Kinect dataset.

6. Robustness Analysis
In Figure 9 and 10, we provide qualitative comparisons
against NPHMs on imperfect observations with different
noise and sparsity levels. Detailed quantitative results from
our robustness analysis are summarized in Table 3 and
Table 4. The results illustrate the superior robustness of
DPHMs compared to NPHMs across a range of imperfect
observations.

Method FLAME ImFace ImFace* ImAvatar NPHM Ours

0 mm 21.01 40.71 43.71 14.84 84.49 89.87
0.5mm 21.06 40.61 43.65 14.01 82.93 88.41
1mm 21.05 40.57 43.42 14.35 79.67 86.12
2mm 21.08 39.86 42.64 13.85 69.29 79.41

Table 3. Quantitative results at different noise levels of the input
point cloud at each frame.

Method FLAME ImFace ImFace* ImAvatar NPHM Ours

10,000 21.01 40.74 43.69 14.96 84.25 89.62
5,000 21.06 40.71 43.72 14.84 84.49 89.87
2,500 21.05 40.68 43.70 14.53 83.55 89.65
250 21.08 40.30 42.86 14.37 81.78 85.31

Table 4. Quantitative results at different sparsity levels of the input
point cloud at each frame.

7. Discussions

Hair reconstruction. When hair is sufficiently observed,
reconstructed hair can be aligned with input (Fig. 1 and
second example of Fig. 4 in the main paper). When given
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Figure 6. Head Tracking on the DPHM-Kinect dataset. Note that RGB images are only used for reference not used by all the methods
except ImAvatar. Compared to state-of-the-art methods, our approach achieves more accurate identity reconstruction with detailed hair
geometries while tracking more plausible expressions, even during extreme mouth movements.
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Figure 7. Head Reconstruction and Tracking on the single-view depth sequences of NerSemble [6]. Note that RGB images are only used
for reference and not used by all methods except ImAvatar. Compared to state-of-the-art methods, our approach demonstrates the ability
to reconstruct realistic head avatars with hairs and accurately capture intricate facial expressions.
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(a) RGB (b) Input Scans (c) NICP (d) Ours

Figure 8. Qualitative comparisons against NICP on the DPHM-
Kinect dataset.

a few hair measurements in the depth scans (first example
of Fig. 4 in the main paper), we can still output plausible
results compared to baselines. We believe that incorporat-
ing RGB images with depth scans as inputs could further
improve the results.

Arbitrary Length of Sequences. Our method formulates
head tracking as an optimization problem. It directly op-
timizes the identity and expression parametric latent. This
eliminates the need for an encoder to process input depth
scans. As mentioned in Sec. 3, our non-rigid tracking con-
sists of three stages: identity fitting using the first frame,
frame-by-frame expression fitting, and joint fine-tuning of
rigid and non-rigid registration parameters. In the final
stage, if the sequence length is short, we can jointly fine-
tune the parameters of all frames. However, for long se-
quences, we can improve temporal smoothness by ran-
domly sampling fragments, with each fragment comprising
three consecutive frames. This strategy effectively mitigates
memory consumption issues. Therefore, our method is ca-
pable of handling depth sequences of arbitrary length.
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Figure 9. Qualitative comparisons of NPHM and our method with
respect to noise in the input scan. We perturb the input scans by
additive Gaussian noise with different standard deviations.
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Figure 10. Qualitative comparisons of NPHM and our method
with respect to the number of points in the input scan.

Non-marginal quantitative improvements. In Fig. 11,
We provide comparisons between NPHM and our method
in terms of reconstructed meshes and error maps derived
from Scan2Mesh distances, along with the calculated met-
rics. Notably, 0.263 mm lower ℓ2 error means significant
improvements in reconstructing facial wrinkles and mouth
regions, also with 9.63% higher Precision@1.5mm score.

6mm

L2 error|: 1.09 NC 
92.91
PR: 82.54
PR2: 97.53

L2 error|: 1.348
NC 89.03
PR: 72.91
PR2: 93.80

NPHM Ours

Figure 11. Comparisons between NPHM and our method in recon-
structed meshes and error maps from Scan2Mesh distances, along
with the calculated metrics.

Expression Transfer. As our approach disentangles iden-
tity and expression via two separate latents, it can be ap-
plied to expression transfer applications. In Fig. 12, we
demonstrate the transfer of our reconstructed expressions
to a different person. Given a monocular sequence of depth
scans as inputs, we initially obtain the identity reconstruc-
tion and track expression transitions by our method. Sub-
sequently, we animate the source identity using the recon-
structed expression latent. The transfer result faithfully rep-
resents the intricate facial expressions without introducing
personalized geometry details such as hairstyle.

RGB (not used) Scan (Input) Ours (Output)

Source Identity

Transfer results

Figure 12. Expression Transfer. Given a monocular depth se-
quence of a head avatar, we first use our tracking method to obtain
the identity and expression latent. Then we transfer the recon-
structed expression to the source identity using backward defor-
mation fields, which are conditioned on both the source identity
latent and the target expression latent.
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