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In this supplemental material, we provide details for our
implementation in Sec. 1, dataset pre-processing and text
prompt generation in Sec. 2, baseline implementations in
Sec. 3, additional comparisons and results in Sec. 5, and
user studies in Sec. 6.

1. Implementations
1.1. Shape Auto-Encoder

We adopt a pre-trained shape auto-encoder to extract a
set of latent shape codes for CAD models from the 3D-
FUTURE [1] dataset. The network architecture of the shape
auto-encoder is shown in Fig. 1. It is a variational auto-
encoder, similar to FoldingNet [11]. Specifically, a point
cloud Pin of size 2,048 is fed into a graph encoder based on
PointNet [4] with graph convolutions [7] to extract a global
latent code of dimension 512, which is used to predict the
mean µ and variance σ of a low-dimensional latent space of
size 32. Subsequently, a compressed latent is sampled from
N (µ, σ). Finally, the compressed latent is mapped back to
the original space and passed to the FoldingNet decoder to
recover a point cloud Prec of size 2,025. The used training
objective is a weighted combination of Chamfer distance
(i.e. CD) and KL divergence.

Lvae = CD(Pin,Prec) + ωkl ∗KL(N (µ, σ)||N (0, I)),
(1)

where ωkl is set to 0.001. The latent compression and KL
regularization lead to a compact and structured latent space,
focusing on global shape structures. The shape autoencoder
is trained on a single RTX 2080 with a batch size of 16 for
1,000 epochs. The learning rate is initialized to lr = 1e−4
and then gradually decreases with the decay rate of 0.1 in
every 400 epochs.

1.2. Shape Code Diffusion

We use the extracted latent codes to train shape code diffu-
sion. While we apply KL regularization, the value range of
latent codes is still unbound. To make it easier to diffuse,
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Figure 1. Shape Auto-encoder.

we scale the latent codes to [−1, 1] by using the statistical
minimum and maximum feature values over the whole set.
During inference, we rescale generated shape codes.

1.3. Shape Retrieval

During inference, we use shape retrieval as the post-
processing procedure to acquire object surface geometries
for generated scenes. Concretely, for each instance, we per-
form the nearest neighbor search in the 3D-FUTURE [1]
dataset to find the CAD model with the same class label
and the closest geometry feature.

2. Dataset
Preprocessing The dataset preprocessing is based on the
setting of ATISS [3]. We start by filtering out those scenes
with problematic object arrangements such as severe object
intersections or incorrect object class labels, e.g., beds are
misclassified as wardrobes in some scenes. Then, we re-
move those scenes with unnatural sizes. The floor size of a
natural room is within 6m × 6m and its height is less than
4m. Subsequently, we ignore scenes that have too few or
many objects. The number of objects in valid bedrooms
is between 3 and 13. As for dining and living rooms, the
minimum and maximum numbers are set to 3 and 21 re-
spectively. Thus, the number of objects is N = 13 in bed-
rooms and N = 21 in dining and living rooms. In addition,
we delete scenes that have objects out of pre-defined cate-
gories. After pre-processing, we obtained 4,041 bedrooms,
900 dining rooms, and 813 living rooms.

For the semantic class diffusion, we have an additional
class of ‘empty’ to define the existence of an object. Com-
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bining with the object categories that appeared in each room
type, we have L = 22 object categories for bedrooms, and
L = 25 object categories for dining and living rooms in
total. The category labels are listed as follows.

# 22 3D-Front bedroom categories
[’empty’, ’armchair’, ’bookshelf’, ’cabinet’,
’ceiling_lamp’, ’chair’, ’children_cabinet’,
’coffee_table’, ’desk’, ’double_bed’,
’dressing_chair’, ’dressing_table’, ’kids_bed’,
’nightstand’, ’pendant_lamp’, ’shelf’,
’single_bed’, ’sofa’, ’stool’, ’table’,
’tv_stand’, ’wardrobe’]

# 25 3D-Front dining or living room categories
[’empty’, ’armchair’, ’bookshelf’, ’cabinet’,
’ceiling_lamp’, ’chaise_longue_sofa’,
’chinese_chair’, ’coffee_table’, ’console_table’,
’corner_side_table’, ’desk’, ’dining_chair’,
’dining_table’, ’l_shaped_sofa’, ’lazy_sofa’,
’lounge_chair’, ’loveseat_sofa’,
’multi_seat_sofa’, ’pendant_lamp’,
’round_end_table’, ’shelf’, ’stool’,
’tv_stand’, ’wardrobe’, ’wine_cabinet’]

Text Prompt Generation We follow the SceneFormer [6]
to generate text prompts describing partial scene configura-
tions. Each text prompt contains one to three sentences. We
explain the details of text formulation process by using the
text prompt ’The room has a dining table, a pendant lamp,
and a lounge chair. The pendant lamp is above the dining
table. There is a stool to the right of the lounge chair.‘ as
an example. First, we randomly select three objects from
a scene, get their class labels, and then count the number
of appearances of each selected object category. As such,
we can get the first sentence. Then, we find all valid ob-
ject pairs associated with the selected three objects. An ob-
ject pair is valid only if the distance between two objects is
less than a certain threshold that is set to 1.5 in our method.
Next, we calculate the relative orientations and translations,
from which we can determine the relationship type of the
valid object pair from the candidate pool: ’is above to‘, ’is
next to‘, ’is left of‘, ’is right of‘, ’ surrounding‘, ’inside‘,
’behind‘, ’in front of‘, and ’on‘. In this way, we can acquire
some relation-describing sentences like the second and third
sentences in the example. Finally, we randomly sampled
zero to two relation-describing sentences.

3. Baselines
DepthGAN DepthGAN [10] adopts a generative adver-
sary network to train 3D scene synthesis using both se-
mantic maps and depth images. The generator network
is built with 3D convolution layers, which decode a volu-
metric scene with semantic labels. A differentiable projec-
tion layer is applied to project the semantic scene volume
into depth images and semantic maps under different views,

where a multi-view discriminator is designed to distinguish
the synthesized views from ground-truth semantic maps and
depth images during the adversarial training.

Sync2Gen Sync2Gen [9] represents a scene arrangement
as a sequence of 3D objects characterized by different at-
tributes (e.g., bounding box, class category, shape code).
The generative ability of their method relies on a variational
auto-encoder network, where they learn objects’ relative at-
tributes. Besides, a Bayesian optimization stage is used as a
post-processing step to refine object arrangements based on
the learned relative attribute priors.

ATISS ATISS [3] considers a scene as an unordered set
of objects and then designs a novel autoregressive trans-
former architecture to model the scene synthesis process.
During training, based on the previously known object at-
tributes, ATISS utilizes a permutation-invariant transformer
to aggregate their features and predicts the location, size,
orientation, and class category of the next possible object
conditioned on the fused feature. The original version of
ATISS [3] is conditioned on a 2D room mask from the top-
down orthographic projection of the 3D floor plane of a
scene. To ensure fair comparisons, we train an uncondi-
tional ATISS without using a 2D room mask as input, fol-
lowing the same training strategies and hyperparameters as
the original ATISS.

4. Ablation Studies
In main paper, we investigated the effectiveness of each de-
sign in our DiffuScene, including network architecture, loss
function, and geometry feature diffusion. We present more
implementation details of each method variant.
What is the effect of UNet-1D+Attention as the de-
noiser? We advocate the use of UNet-1D with attention
layers as the denoising network. The self-attention layers
within this architecture effectively aggregate all object fea-
tures and explore inter-object relationships, facilitating the
learning of a global context that aids in distinguishing dif-
ferent objects within the scene. An alternative choice is
to use a pure transformer network, like the one adopted
in DALLE-2 [5]. However, our comparisons revealed a
marginal degradation in performance metrics such as FID,
KID, SCA, and CKL. It demonstrates that UNet-1D with
attention layers is more adept at capturing accurate scene
distributions than networks solely composed of transforma-
tion layers.
What is the effect of multiple prediction heads in the
denoiser? In our denoiser architecture, we employ three
distinct encoding and prediction heads tailored for specific
object properties, including bounding box parameters, se-
mantic class labels, and geometry codes. By utilizing mul-
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tiple diffusion heads with individual loss functions for each
attribute (e.g., bouding box, class, geometry), we mitigate
the risk of bias towards any single attribute within a single
encoding and prediction head. This approach ensures that
our denoiser effectively captures and processes diverse ob-
ject properties without favoring one over the others. The
consistent improvement in each evaluation metric verifies
the effectiveness of multiple prediction heads.
What is the effect of the IoU loss? In scene diffusion
models, we employ noise prediction loss as the primary su-
pervision, focusing on attribute denoising of individual ob-
ject instances. However, this loss does not address object
intersections within a scene. To alleviate the issue, we aug-
ment it with pair-wise bounding box IoU loss. Quantitative
comparisons indicate that incorporating IoU loss results in
the synthesis of scenes with improved symmetry and en-
hanced plausibility, as evidenced by lower FID, KID, SCA,
PIoU, and higher Sym.
What is the effect of geometry feature diffusion? To
evaluate our method’s performance without geometry fea-
ture diffusion, we eliminate the geometry feature encod-
ing and prediction heads from our denoiser network. Con-
sequently, this method only produces bounding boxes and
class labels for objects within a scene. During inference,
for each generated object, we conduct shape retrieval in the
3D-FUTURE [1] dataset to find the CAD model with the
same class label and the closest 3D bounding box sizes.
Fig. 5 of the main paper shows that our model can find
symmetric nightstands by beds due to the geometry aware-
ness of the diffusion process and shape retrieval. Table 3
in the main paper presents the comparison in the forma-
tion of symmetric pairs: 0.72 (w/ shape diffusion) vs. 0.50
(w/o shape diffusion). This highlights the effectiveness of
geometry feature diffusion in achieving symmetric place-
ments and semantically coherent arrangements. Improved
plausibility in synthesis results is reflected in lower FID,
KID, and SCA evaluations. Additionally, the decrease in
CKL suggests that the joint diffusion of geometry code and
object layout facilitates learning more similar object class
distributions.

5. Additional Results
Diversity Analysis. The qualitative comparisons in Fig.
7 of the main paper and Fig. 6 illustrate that our diffusion-
based method can produce more diverse results than the
baseline methods. Following ATISS and LEGO, we use
FID and KID to quantitatively evaluate the result diversity.
We compare both the mean and covariance of generated and
reference scene distribution. Additionally, we include Pre-
cision / Recall commonly used to evaluate generative mod-
els [2]. Precision is the probability that a randomly gen-
erated scene falls within the support of real scene distribu-
tion. Recall is the probability that a random scene from the

datasets falls within the generated scene distribution. Tab. 1
shows that our approach outperforms all baselines in both
metrics, which demonstrates better diversity, plausibility,
and mode coverage.

Method
Bedroom Dining Living

Precision Recall Precision Recall Precision Recall

DepthGAN 58.05 31.66 70.16 15.77 81.30 12.08
Sync2Gen* 55.10 67.57 70.90 47.16 75.20 52.01
Sync2Gen 59.00 67.74 76.15 33.19 77.77 48.79

ATISS 72.80 77.08 77.70 64.17 76.50 62.64
Ours 82.31 77.93 82.80 78.83 79.30 70.53

Table 1. The Precision [%] of generated scenes and Recall [%] of
reference scenes. For both metrics, the higher the better.

retrieval

Real scene Partial Scene ATISS Ours

(a) Real scene (b) Partial Scene (c) ATISS (d) Ours

Figure 2. Scene completion of a real scene. We select a sofa and
perform CAD retrieval to obtain a partial scene as input.

“There is a pendant 
lamp above the
coffee table . ” 

“The corner side 
table is to the left of 
the armchair .” 

(a)

(b)

Figure 3. Text-guided (a) object suggestion (b) scene editing.

Unconditional Scene Synthesis In Fig. 4, we provide
additional qualitative comparisons against state-of-the-art
methods on the unconditional scene synthesis model. Also,
more visualization results of our unconditional scene syn-
thesis model are presented in Fig. 5.

Scene Arrangement We visualize additional qualitative
comparisons on the task of scene arrangement in Fig. 7.
LEGO [8] aims to predict 2D object locations and orienta-
tions, taking the input of a floor plane, object semantics, and
geometries. It does not handle objects like lamps that could
hang from the ceiling. In contrast, DiffuScene is a scene-
generative model that predicts 3D instance properties from
random noise, including 3D locations and orientations, se-
mantics, and geometries. Compared to ATISS and LEGO,
our method generates various object placement options with
better plausibility and more symmetries.
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Scene Completion We present more qualitative compar-
isons on the task of scene completion in Fig. 6. Also,
the quantitative results are shown in Tab. 2. Compared to
ATISS, our method produced more diverse completion re-
sults with higher fidelity. Our method can consistently out-
perform ATISS in all listed metrics.

Room Method FID ↓ KID ↓ #Sym. PIoU

Bed
ATISS 30.54 2.38 0.01 0.84
Ours 27.32 1.92 0.47 0.61

Dining
ATISS 42.65 8.32 1.42 1.73
Ours 40.99 6.31 2.57 0.84

Living
ATISS 43.30 5.22 0.16 0.87
Ours 40.49 4.59 2.24 0.58

Table 2. Quantitative comparisons on the task of scene comple-
tion on 3D-FRONT bedrooms, dining rooms, and living rooms.
Only 3 objects are given in the partial scenes.

Real-world Scene Generalization While trained on syn-
thetic datasets, our method can be evaluated on real-world
scenes without finetuning, e.g. for scene completion as
shown in Fig. 2. Compared to ATISS, our method produces
a more favorable scene.

Text-conditioned Scene Synthesis We provide addi-
tional qualitative comparisons on the text-conditioned scene
synthesis in Fig. 8. As observed, in the first and third rows,
ATISS has object intersection issues while ours does not. In
the second row, our method can correctly generate a corner
side table on the left of the armchair. However, ATISS gen-
erates a corner side table on the right of the armchair. In the
fourth row, our method can generate four dining chairs that
are consistent with the text description, but ATISS can only
generate two dining chairs.

Scene editing via texts. In Fig. 3, we show that our
method can support text-guided object suggestion and scene
editing, without changing the attributes of other objects.

6. User Study
We conducted a perceptual user study to evaluate the qual-
ity of our method against ATISS on the application of text-
conditioned scene synthesis. As shown in Fig. 9, we provide
the visualization of a ground-truth scene used to generate a
text prompt as a reference. For each pair of results, a user
needs to answer “which of the generated scenes can bet-
ter match the text prompt?” and “Which of the generated
scenes is more reasonable and realistic?”. We collect the

answers of 225 scenes from 45 users and calculate the statis-
tics. 62% of the user answers prefer our method to ATISS
in realism. 55% of answers think our method is more con-
sistent with the text prompt.

References
[1] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang

Zhao, Steve Maybank, and Dacheng Tao. 3d-future: 3d fur-
niture shape with texture. International Journal of Computer
Vision, 129:3313–3337, 2021. 1, 3

[2] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall met-
ric for assessing generative models. Advances in Neural In-
formation Processing Systems, 32, 2019. 3

[3] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten
Kreis, Andreas Geiger, and Sanja Fidler. Atiss: Autoregres-
sive transformers for indoor scene synthesis. Advances in
Neural Information Processing Systems, 34:12013–12026,
2021. 1, 2, 5, 6, 7, 8

[4] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 1

[5] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 2

[6] Xinpeng Wang, Chandan Yeshwanth, and Matthias Nießner.
Sceneformer: Indoor scene generation with transformers. In
2021 International Conference on 3D Vision (3DV), pages
106–115. IEEE, 2021. 2

[7] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 1

[8] Qiuhong Anna Wei, Sijie Ding, Jeong Joon Park, Rahul
Sajnani, Adrien Poulenard, Srinath Sridhar, and Leonidas
Guibas. Lego-net: Learning regular rearrangements of ob-
jects in rooms. arXiv preprint arXiv:2301.09629, 2023. 3,
7

[9] Haitao Yang, Zaiwei Zhang, Siming Yan, Haibin Huang,
Chongyang Ma, Yi Zheng, Chandrajit Bajaj, and Qixing
Huang. Scene synthesis via uncertainty-driven attribute syn-
chronization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5630–5640, 2021. 2,
5

[10] Ming-Jia Yang, Yu-Xiao Guo, Bin Zhou, and Xin Tong.
Indoor scene generation from a collection of semantic-
segmented depth images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 15203–
15212, 2021. 2, 5

[11] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 206–215, 2018. 1

4



(a) DepthGAN [10] (b) Sync2Gen [9] (c) ATISS [3] (d) Ours

Figure 4. Additional results of unconditional scene synthesis. We compare our method with the state-of-the-art by generating from
random noises, where our results present higher diversity and better plausibility with fewer penetration issues and more symmetric pairs.
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Figure 5. Diverse and plausible results of unconditional scene synthesis from our method.

(a) Partial Scenes
(b) ATISS [3] (c) Ours

Figure 6. Scene completion from partial scenes with only three objects given as inputs. Compared to ATISS, our method produced more
diverse completion results with higher fidelity.
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(a) Noisy Scene (b) ATISS [3] (c) LEGO [8] (d) Ours

Figure 7. Scene re-arrangements of collections of random objects. Compared to ATISS and LEGO, our method generates various object
placement options with better plausibility and more symmetries.
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(a) Input text (b) Reference (c) ATISS [3] (d) Ours

Figure 8. Text-conditioned scene synthesis. The input text describes only a partial scene configuration. Our method generates more
plausible scenes matched with the texts.
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Figure 9. User Study UI. Based on the reference scene used to generate text prompts, users are asked which of the synthesized scenes is
more matched with the text prompt and more realistic. Note that the results from ATISS and our method are randomly shuffled to avoid
bias.
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