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A Proof for Claim 1

Proof. We first review some relevant notations and def-
initions. In section 3.3 (main paper), P̃c

n is introduced
to represent the context prototype of a class, denoted as
P̃c
n = {pi}Ki=1. PI

n is the instance prototype within mini-
batch. Considering the importance of each context proto-
type. The wi represents the positiveness score used to adjust
the prototype pair. Our optimization objective is defined as
maximizing the intra-class similarity (i.e., maximizing the
similarity between the current instance prototype and the
context prototype of the same class). This objective is math-
ematically formulated as follows:

max
θ

K∑
i=1

wi·log(
exp

(
PI
n · p⊤

i

)∑K
k=1 exp

(
PI
n · p⊤

k

) ), pi ∈ P̃c
n, (15)

where K represents the number of soft positive neighbors,
then the similarity si is defined as:

si =
exp

(
PI
n · p⊤

i

)∑K
k=1 exp

(
PI
n · p⊤

k

) . (16)

The objective function is then construed to minimize the
sum of negative weighted logarithmic similarities, tanta-
mount to maximizing weighted logarithmic similarities.
The objective function is defined as:

min
θ

K∑
i=1

[
−wi · log(

exp
(
PI
n · p⊤

i

)∑K
k=1 exp

(
PI
n · p⊤

k

) )] . (17)
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Then, we solve the optimization problem using the La-
grangian multiplier. The problem is defined as follows:{

Minimize: f (s1, s2, . . . , sK) = −
∑K

i=1 wi · log(si)
Subject to: g (s1, s2, . . . , sK) =

∑K
i=1 si − 1 = 0,

(18)
where f is the objective function and g represents the con-
straint function. The corresponding Lagrangian function
and its partial derivatives are defined as follows:

L(s1, ..., sK , λ) = −
K∑
i=1

(wi · log(si)) + λ

(
K∑
i=1

si − 1

)
,

(19)


∂L
∂si

= −wi

si
+ λ = 0,

∂L
∂λ =

∑K
i=1 si − 1 = 0,

(20)

From Eq. 20, the optimal value of si is s∗i = wi∑K
k=1 wk

to
maximize the Lagrange functionLwhile satisfying the con-
straint conditions. which concludes the proof for Claim 1 in
section 3.3 (main paper).

Through the method of Lagrange multipliers, we iden-
tify the optimal value si values that maximize the objec-
tive function detailed in Eq. 15 while adhering to the con-
straint function. This optimization method encourages the
model to proportionally relate the similarity between differ-
ent context prototypes within the same category and the cur-
rent instance with the corresponding positiveness score. Ef-
fectively incorporating knowledge from the self-supervised
branch into the model, this strategy enhances its capability
to distinguish between different prototypes, consequently
leading to an improvement in the ability of the model to
generalize across various scenarios.
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B More Details of Support Bank

On the PASCAL VOC 2012 train set, the feature set is de-
noted as N × L × D, where N represents the number of
categories, L represents the number of features per cate-
gory, which we set to 1000, and D is the dimensional vec-
tor for each feature. In the initialization of the support bank,
all storage positions are set to zero. When a new prototype
needs to be added, the system follows the First-In, First-Out
(FIFO) principle to update the position indicated by the in-
dex. Subsequently, the index is advanced to point to the next
position to be updated. In this way, the oldest data is nat-
urally replaced by the incoming new data, while the index
consistently points to the next position that will be updated.
At each training step, we establish a confidence threshold α
for controlling the pace of bank updates. The support bank
C is updated when the n-th class is detected in the I (i.e.,
yi = 1) and the classification score is higher than α, i.e.,
ŷi > α. Otherwise, we keep the support Bank C.

We are also interested in how our method would perform
when various confidence threshold values are selected. The
results shown in Table S1 indicate that the optimal value for
α is 0.8 (our default).

Table S1. Ablation study of sensitivity of our approach to the se-
lection of confidence threshold α on PASCAL VOC 2012 train
set.

threshold α 0.7 0.75 0.8 0.85 0.9 0.95
mIoU(%) 62.0 62.2 62.5 62.5 62.3 62.2

C More Experimental Details

Dataset. We evaluate our proposed method on PASCAL
VOC 2012 [4] segmentation benchmark with 20 foreground
classes and one background class. The official dataset split
contains 1,464 images for training, 1,449 for validation, and
1,456 for testing. The used MS COCO 2014 [8] dataset has
81 classes and contains 80k train and 40k validation images,
which is more challenging for weakly supervised semantic
segmentation.
Implementation Details. For pseudo-label generation,
SGD optimizer with a momentum of 0.9 and a weight decay
of 10−4 are adopted. The initial learning rate is set to 0.1
for backbone and 1 for other parameters. The learning rate
is then adjusted by poly decay with power of 0.9, follow-
ing [1, 3]. In our experiments, the CAM-generation model
is trained with a batch size of 16 on one Nvidia 3090 GPU
for Pascal VOC 2012 and on 4 Nvidia 3090 GPUs for MS
COCO 2014. The scale ratios of multi-scaled CAM during
inference are set to {0.5, 1.0, 1.5, 2.0} following [3].

With regard to the training details of semantic
segmentation DeepLabV2 model: (1) For PASCAL
VOC 2012 dataset, images are randomly scaled to

Table S2. Evaluation (mIoU (%)) of different pseudo labels on MS
COCO 2014 training set.

Method
MS COCO

CAM Mask

CONTA [11] 28.7 35.2
ESOL [7] 35.7 44.6

IRN [1] 33.5 42.9
+CPAL (Ours) 37.6 ↑4.1 46.2 ↑3.3

AMN [6] 40.3 46.7
+CPAL (Ours) 42.9 ↑2.6 48.9 ↑2.2
CLIP-ES [9] 40.5 47.3
+CPAL (Ours) 43.4 ↑2.9 49.1 ↑1.8

{0.5, 0.75, 1.0, 1.25, 1.5} and cropped to 321×321. The
batch size is set to 10, and the number of total train-
ing iterations is set to 20k. (2) For MS COCO 2014
dataset, we apply data augmentation following the ap-
proach proposed in [6]. Images are randomly scaled to
{0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}, and then cropped to
481×481. The training batch size is set to 5 and the number
of training iterations is set to 100k. For both (1) and (2), the
initial learning rate is 2×10−4 for the ImageNet pre-trained
model. We use a poly learning rate scheduler decayed with
a power of 0.9. Balanced cross-entropy loss is adopted for
MS COCO train set as in [5, 6]. For testing, we employ
a multi-scaled strategy and utilize denseCRF with default
hyper-parameters from [2] for post-processing.

D Ablation Study on MS COCO
For MS COCO, the loss coefficients λBCE and λSelf are
both set as 1 in Eq. 1 (main paper). The threshold τ in Eq.
4 (main paper) is set to 0.2. Support bank size for each class
to store region embeddings, with the size set to 2000. The
k-means prototype clustering in Section 3.2 (main paper) is
performed only once at the beginning of each epoch, and the
per-class prototype number Np is set to 60, and the top-K
candidate neighbors is set to 25 in Eq. 6 (main paper).
Pseudo-Label Quality on COCO Dataset. Experimental
results reported in Table S2 show that the PACAM from
CPAL is significantly better than the previous works on MS
COCO 2014 training set [8], which is a larger-scale dataset
compared with PASCAL VOC 2012 [4]. We use CRF-
improved CAM as the final pseudo-label following previous
works [6, 10]. In the table, we can observe that the use of the
CPAL plugin, for instance, in the IRN [1] method, results in
an improvement of 4.1% in CAM pseudo-label and 3.3% in
Mask pseudo-label relative to the baseline. Similarly, im-
provements are observed in the AMN [6] and CLIP-ES [9]
methods. These results are a supplement to the MS COCO
2014 validation set performance reported in the main paper.
Effectiveness of candidate neighbors and positiveness.



Table S3. Analysis of the positiveness and number of candidate
neighbors K. The mIoU values are evaluated on the MS COCO.

Neighbor Positiveness K mIou(%)

" " 25 37.6

% % - 35.2
" % 25 36.3

" " 10 36.2
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Figure S1. Sensitivity analysis on MS COCO dataset, in terms of
(a) the threshold τ used to generate 0-1 seed masks from heatmaps.
(b) the length of the support set. The results show that CPAL is not
sensitive to them.

We assess the significance of candidate neighbors and pos-
itiveness on MS COCO dataset, as illustrated in Table S3.
Removing positiveness and utilizing all neighbors for pre-
diction, Miou accuracy decrease in CAM from 36.3% to
35.2%. It allows the model to adaptively and selectively
focus on neighbors that contribute significantly to the task
during the learning process, while disregarding uninforma-
tive neighbors.

In the third section of Table S3, we conducted experi-
ments to analyze the impact of the number of neighbors on
this large-scale dataset. On the one hand, having a sufficient
number of neighbors can enhance the diversity of features,
allowing the model to comprehensively learn different as-
pects of features and improve its robustness. On the other
hand, including less-correlated prototypes may introduce
too much noise during the training process and diminish the
ability of the model to perceive discriminative features.
Analysis of Hyper-parameters. We conduct a hyperpa-
rameter sensitivity analysis, varying values such as (a) the
threshold τ for generating the 0-1 seed mask. Fig. S1 (a) in-
dicates that the optimal τ value is 0.2. Additionally, we ex-
amine (b) the length of the support set, finding that a larger
set enhances model performance. Fig. S1 (b) shows that
the encoder trained with the largest set achieves the high-
est accuracy of 37.6%, suggesting that increasing capacity
enables the model to find more correlated neighbors for sup-
port.

E Pseudo Code
To make our training procedure clear, we first present the
overall training process of our proposed CPAL, which in-

cludes the detailed training steps and configurations of
neighbor exploring and positiveness calculation. We also
illustrate how to align the mini-batch feature to the globe
feature and the self-supervised loss.

F Limitation
The Context Prototype-Aware Learning (CPAL) strategy
proposed in this work, while demonstrating its superiority,
requires maintaining an external support bank during train-
ing, which may increase the complexity of memory usage.
However, experiments have shown that CPAL does not de-
mand a high amount of memory, and we have implemented
the strategy using smaller memory. Furthermore, the as-
pect of consistency regularization within CPAL is yet to be
thoroughly explored. Future research should focus on inte-
grating CPAL more deeply into frameworks based on con-
sistency regularization, such as by applying CPAL to per-
turbed samples to explore potential improvement.

G More Qualitative Results
In Fig. S2 and Fig. S3, we show segmentation results of
CPAL on VOC 2012 test and COCO 2014 val, respec-
tively. Consistent with our analysis in the main paper, we
observe that CPAL is able to produce accurate segmenta-
tion results with crisp boundaries in diverse scenarios (i.e.,
co-occurrence and similar categories).
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Algorithm 1: Pseudocode of CPAL
Input:
ηbase: base learning rate
C: the support bank
GAP: global average pooling function
θ,wn, v,: the classification model, the classifier weight, the projection head
y: image-level label vector
n: the n-th class
IP(·): the operator of calculating instance prototype in Eq. 4
CP(·): the operator of calculating context prototypes in Eq. 5
NN(·): the operator of calculating soft positive neighbors in Eq. 6
W : the operator of calculating the positiveness score in Eq. 7
δn: the shift terms in Eq. 12
LBCE(·): multi binary cross-entropy loss in Eq. 2
LSelf (·): self-supervised loss in Eq. 14
T,B: total optimization steps, batch size
Output: Updated classification model

1 for t = 1 to T do
2 χ←

{
x(i) ∼ D

}N
i=1

// Sample a batch of B images

3 for x(i) ∈ χ do
4 f ← θ

(
x(i)
)

; // Extract features using the network θ
5 ŷ ← GAP(wn(f)) ; // Compute logits prediction with classifier weights wn

6 CAM← ReLU(w⊤
n f) // Generate CAM using feature maps and classifier weights

7 z ← v(f) ; // Transform features using projection head v
8 ẑ ← z + δn ; // Features distribution alignment by adding the shift terms

when the n-class appears in x.
9 PI

n ← IP(CAM, ẑ),Pc
n ← CP(C,PI

n, k-mean) ; // Modeling instance prototype and
context prototypes

10 w ←W (PI
n,Pc

n) ; // Calculate positiveness score between instance and context
prototypes

11 P̂c
n ← NN(PI

n, w) ; // Calculate the soft positive neighbors

12 PACAM← cos(P̂c
n, f) ; // Generate PACAM using cosine similarity with P̂c

n

13 Lx1
← LBCE(y, ŷ) ; // multi binary cross-entropy loss

14 Lx2 ← LSelf (PACAM,CAM) ; // self-supervised loss with consistency
regularization

15 Ltotal := Lx1
+ Lx2

; // sum up the total loss for the instance x

16 end
17 ∇θ,v,wn ← 1

B

∑B
i=1 ∂θ,v,wnLtotal ; // compute the total loss gradient w.r.t. θ, v,wn

18 η ← ηbase · (cos (π (t− t0) / (T − t0)) + 1) /2 ; // cosine decay learning rate
19 θ, v,wn ← optimizer (θ, v,wn∇θ,v,wn

, η) ; // update parameters
20 end
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Figure S2. Qualitative segmentation results on VOC 2012 test.
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Figure S3. Qualitative segmentation results on MS COCO val.


