
Appendix — NeRFDeformer: NeRF Transformation from a Single View via 3D
Scene Flows

Supplementary Material

This supplementary material is structured as follows:
• We provide additional details regarding the NeRFDe-

former in Sec. A.
• Additional information regarding baselines are summa-

rized in Sec. B.
• Further experimental results are given in Sec. C.

A. NeRFDeformer Details
A.1. Optimization Details

As mentioned in the main paper, we do not store an inde-
pendent learnable parameter Ri, ti for each anchor point vi,
as this may be computationally demanding when the num-
ber of vertices/anchor points |V| is large. Instead, we only
maintain learnable parameters for a subset of anchor points,
e.g., RL

i , t
L
i . We then use interpolation to calculate Ri, ti

for the remaining anchor points via,

Pi = {(wG(vi, v
L
j ), R

L
j ) : v

L
j ∈ KG(v,VL)}, (1)

Ri = quat average(Pi), (2)

ti =
∑

j∈KG(v,VL)

wG(vi, v
L
j )t

L
j . (3)

Here, Pi is the set of pairs of the rotation matrix RL
i and

their weights, VL = {vLi } is the set of vertices on a coarser
mesh ML = (VL, EL) obtained from mesh decimation
of MA and VL ⊂ V . Ri is calculated using the classic
quaternion averaging method [6] and ti is obtained via a
linear combination. We obtain the weight wG as follows:
wG(vi, v

L
j ) ∝

1−
DG(vi, v

L
j ,M

C)

maxk∈KG(v,VL) DG(vi, vLk )
. (4)

Here, DG(vi, v
L
k ) calculates the geodesic distance on the

denser mesh MA between the anchor point vi on MA and
the anchor point vLk on the coarser mesh ML, e.g., VL ⊂ V .
Also, KG(v,VL) finds the K ′-nearest neighbors (K ′ = 6)
of vi on the denser mesh MA among vertices in VL using
the previous geodesic distance.

To reduce the computational needs, the standard as-rigid-
as-possible loss LARAP is also formulated on the decimated
mesh encouraging local rigidity for all vertices vLi :

LARAP=
1

|VL|

|VL|∑
i=1

∑
j∈N(i)

∥(vLi + tLi − (vLj + tLj )−RL
i (v

L
i − vLj )∥2, (5)

where N(i) is vLi ’s neighborhood according to EL.

A.2. Correspondence Matching Details

First using the NeRF Φ we render images and correspond-
ing depth maps depicting the original scene by sampling N
random camera poses, i.e., we compute

{(IAi , DA
i ) = Render(Φ, EA

i ) : i ∈ {1, . . . , N}}. (6)

Here, EA
i is a camera pose sampled approximately uni-

formly from a hemisphere over Φ.
We then apply ASpanFormer [2] over the image pair

(IB , IAi ) depicting the transformed and original scene. Fol-
lowing ASpanFormer [2], we match pixels in a downsam-
pled 100× 100-resolution original image with pixels in the
similarly downsampled transformed image. A threshold ta
(ta = 0.3) is set to filter low confidence matches. For-
mally, using this procedure we obtain a set of ‘transformed
image’-‘original image’ pixel pairs P̂i = {(p̂Bi,j , p̂Ai,j)} for
pair (IB , IAi ) referred to by index i, i.e.,

P̂i = ASpF(IB , IAi ). (7)

We apply ASpanFormer on multiple images as a single
image’s view is limited especially when non-rigid deforma-
tions relate the original and the transformed scene. Notably,
correspondences are often noisy and may have conflicts. To
address this, we use a two-step procedure to filter out wrong
correspondences. As discussed in the main paper, the first
step filters in 2D pixel space. The second step performs
filtering in 3D space.
Pixel-space filtering: Let’s use F2D to refer to the 2D fil-
tering function. It operates on all initial correspondence es-
timates P̂ = ∪N

i=1P̂i and yields

P̂ ′ = F2D(P̂). (8)

Concretely, 2D filtering will retain only the best correspon-
dence for each transformed pixel. ‘Best’ is measured by
the size of the continuous patch of surrounding matching’s
transformed pixels with a confidence > ta.
3D-space filtering: We found solely using 2D filtering to
not be robust enough. A subsequent 3D filtering helps to
further improve the results. For this, the above filtered 2D
correspondences P̂ ′ are lifted to 3D space P = {(pBi , pAi )}
given the depth maps for all transformed and original im-
ages and their camera poses. Here, pBi is a 3D transformed
point by unprojection of a transformed pixel and pAi is a 3D
original point located on the surface of Φ.



Table 1. Extra ablation results (ingp for Instant-NGP [8], ASpF for ASpanFormer [2]).

# matching
original img

source
Our
flow

Filtering
New view synthesis Geometric reconstruction

PSNR↑ SSIM ↑ LPIPS ↓ CD ↓ succ rate ↑ VmIoU ↑
4 ASpF ingp ✓ 2D + 3D 25.9±4.2 0.924±0.034 0.061±0.040 1.46±2.9 0.903 0.666±0.20

5 Lepard [5] ingp ✓ 2D + 3D 21.5±4.5 0.883±0.056 0.119±0.063 7.30±7.3 0.391 0.262±0.16

6-1 ASpF gt ✓ 2D + 3D 25.9±4.3 0.925±0.035 0.061±0.040 2.68±11 0.885 0.646±0.21

6-2 ASpF vanilla NeRF ✓ 2D + 3D 25.0±4.2 0.911±0.037 0.080±0.045 2.86±4.6 0.782 0.585±0.23

Table 2. Geometric reconstruction under noisy camera pose.

s (degree) CD ↓ CD (success) ↓ succ rate ↑ VmIoU ↑
0 1.46±2.9 0.62±0.79 0.903 0.666±0.20

3 2.80±11 0.81±0.84 0.884 0.646±0.21

5 3.02±11 1.00±0.89 0.876 0.642±0.21

10 4.06±12 1.56±0.80 0.779 0.649±0.21

Let’s use F3D to refer to filtering in 3D space, which is
implemented in an iterative way, i.e.,

Pk+1 = F3D(Pk) for 0 ≤ k < K3D. (9)

We let P0 = P . Here, Pk = {pki } is the 3D correspon-
dence pair set after the k-th 3D filtering. The intuition
of 3D filtering is that if several pairs have adjacent origi-
nal points, they are also probably adjacent on the original
NeRF’s surface, and should not have drastically different
transformed correspondence. Otherwise there are false pos-
itives. More specifically, for each 3D corrspondence pair
pki = (pB,k

i , pA,k
i ), we first select all adjacent pairs pkj with

a similar original point pA,k
j that ∥pA,k

i − pA,k
j ∥ < r(r =

0.01) to form a pair index set Ik
i . Then calculate the aver-

age transformed point p′B,k
i of all transformed points in the

former set:

p′B,k
i =

1

|Ik
i |

∑
j∈Ik

i

pB,k
j , with (10)

Ik
i = {j,∀j s.t. ∥pA,k

i − pA,k
j ∥ < r}. (11)

After this, if the transformed point of pair i is not very
different from the above average, e.g., ∥pB,k

i − p′B,k
i ∥ < r′

where we have r′ = 0.02. The pair i is kept in pA,k+1 and
pB,k+1, otherwise, it’s removed.

B. Baseline Details
DreamGaussian we run their released code. Importantly,
to resolve scale ambiguity between the mesh extracted from
DreamGaussian and the ground truth one, we fit a scale and
translation factor to minimize the Chamfer distance.
NeRF finetuning we finetune the original NeRF for an ad-
ditional 2k iterations via the default NeRF reconstruction
loss given only the transformed view.
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Figure 1. Corrspondences matching of Ours and Lepard [5]. We
observe that Lepard produces too many wrong correspondences
while ours are cleaner.

SINE we re-implementated their method as best as we
could since at the time of this submission there was no pub-
licly available code and training/testing data. We carefully
follow the paper while changing a few hyperparameters to
improve their results further on our dataset. The “shape
prior” part of SINE follows our mesh transformation. No
details of how SINE transformed the mesh are provided in
the paper, e.g., mesh resolutions and losses. The MLP for
both 3D flow directions follows the SINE paper design with
1 hidden layer and 128 hidden size using ReLU activation.
We also use positional encoding with 4 frequencies. The
loss terms Lgp, Lgr, and Lcycle follow the SINE paper. We
also use their coefficients for losses, except increasing the
Lgp coefficient from 0.03 to 1 as we observe the original one
to struggle to model the flow of the transformation.

C. Extended Experiments
C.1. Extended Ablations

The quantitative results of our extra ablation study are pro-
vided in Tab. 1 and Tab. 2.
Point cloud matching. We first analyze the performance of
another choice of correspondence matching: Using point
cloud matching [1, 3–5] to find 3D correspondences di-



Figure 2. ROC curves of Chamfer distance for different methods.

rectly. To test this, we first unproject the transformed depth
map into a point cloud. We then sample points on the
surface of MA, the mesh of the original scene. Finally
we apply the current state-of-the-art point cloud matching
method Lepard [5] on both point clouds. Comparing our
design row 4 and Lepard’s in row 5 in Tab. 1. We observe
that the latter obtains worse results both in geometry recon-
struction and new view synthesis. We hypothesize that this
is because Lepard ignores the rich information from RGB
images, making capturing of the non-rigid transformations
observed in our task challenging. More correspondence
matching results of both are illustrated in Fig. 1.
NeRF quality. We also analyze the influence of the NeRF
quality in our method. Note that we are using Instant-NGP
as the NeRF representation in the main paper. We test two
baselines here. Row 6-1 replaces the original images ren-
dered from the NeRF for correspondence matching with
ground truth images. Row 6-2 replaces the Instant-NGP
of the original scene with a vanilla NeRF [7] trained from
fewer and lower resolution images (200 images, 800 × 800
resolution). We observed that row 4 and 6-1 have similar
performance. Although a lower NeRF quality degrades our
method’s result (see row 6-2), the method still achieves de-
cent results, better than all baselines.
Camera quality To assess the impact of camera pose qual-
ity, we perturbed the camera by adding to pitch and yaw
a random number drawn uniformly between [−s, s] (see
Tab. 2). Although incorrect camera pose degrades results
(as expected), our method outperforms the other baselines
despite their use of perfect camera pose.

C.2. Extended Results

Extra geometry reconstruction evaluation. In the main
paper we only put the success rate of chamfer distance (CD)

on the threshold = 0.004. To explain the geometry recon-
struction quality of all methods better, we also draw ROC
curves of CD in Fig. 2. We observe that our method’s re-
construction is better than the one obtained from baselines
on any thresholds.
Failure case. The method can’t recover if too many corre-
spondences are wrong as illustrated in Fig. 3.
Extra visualizations. Furthermore, we extend the qualita-
tive figure of the main paper in Figs. 4 to 6, which show
more results on scenes of our dataset constructed from Ob-
javerse assets. For a better understanding of the scene trans-
formation, we also visualize the view of the original scene
with the same camera pose as the transformed view’s.

(a) Original scene (b) Transformed view (c) Ours matching

Figure 3. A failure case of our correspondence matching. (a,b) de-
pict the original and transformed scene. (c) is our matching result.
See that points on one leg are matched to another. Legs all look
similar and correspondence matching method fails to distinguish
them.
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Training & transformed views View 1 View 2 Mesh

Figure 4. Original view in the same camera pose as the transformed view. Ground truth, DreamGaussian, SINE, and our method.



Training & transformed views View 1 View 2 Mesh

Figure 5. Original view in the same camera pose as the transformed view. Ground truth, DreamGaussian, SINE, and our method.



Training & transformed views View 1 View 2 Mesh

Figure 6. Original view in the same camera pose as the transformed view. Ground truth, DreamGaussian, SINE, and our method.
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