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A. More on underwater dynamic factors

Underwater environments present unique challenges for
scene modeling, primarily due to the three dynamic factors
introduced in Sec. 1. In this part, we explain more about the
three factors.

Firstly, 1 distance-dependent visibility plays a cru-
cial role. As an object moves further away from the cam-
era, it becomes increasingly difficult to observe. This phe-
nomenon results from the inherent scattering and absorbing
properties of water, which significantly diminish the clar-
ity and intensity of light as it travels through the medium.
The scattering leads to light rays deviating from their orig-
inal paths, while absorption reduces their overall strength.
As a result, distant objects appear more blurry and less dis-
cernible, presenting a major challenge for accurate visual
representation in underwater scenes.

Secondly, the aquatic environment is characterized by 2
unstable illumination. This variability stems from the scat-
tering effect of water particles and the fluctuating lighting
conditions, often influenced by factors such as the time of
day, weather, wave turbulence, and water turbidity. Light
rays bend, scatter, and get absorbed differently at various
points, creating non-uniform lighting conditions. These
changes in illumination are not only spatially diverse but
also temporally varying, making the lighting observed from
different viewpoints inconsistent over time. Such instability
in illumination complicates the task of modeling underwa-
ter scenes accurately.

Lastly, the underwater realm is a dynamic ecosystem,
bustling with marine life, which introduces 3 moving ob-
jects as the third dynamic factor. This includes a myriad
of marine plants and animals, each contributing to the ever-

changing visual landscape. These moving entities defy the
static assumptions commonly held in vanilla NeRF models,
which are typically designed for static scenes. The contin-
uous movement of these elements not only alters the visual
scene but also interferes with the light paths, adding another
layer of complexity.

The confluence of these factors creates a highly com-
plex and constantly evolving environment. This complex-
ity poses significant challenges for current NeRF models,
which struggle to comprehend and represent such dynamic
underwater scenes accurately.

B. More explanations on equations
B.1. Explanation on Eq. (3)

Consistent with assumption in SeaThru-NeRF [4], we as-
sume objects are opaque, thus σobj becomes very high near
object surfaces and almost zero elsewhere. Water is semi-
transparent and owns an empirically low non-zero den-
sity. This results in σobj ≫ σw near object surfaces and
σobj ≪ σw in media. In this unified rendering equation, the
minor items of σobj and σw can always be ignored, simpli-
fying Eqs. (3) and (4) to similar equations in works such as
DehazeNeRF [2].

B.2. Explanation on Eq. (8)

Instead of using a linear function in Eq. (8), we designed
a sinusoidal function which maps the original proportions
of density {σsta,i,σdyn,i,σw}

σsta,i+σdyn,i+σw
∈ [0, 1] into weight factors

β{sta,dyn,w},i ∈ [0, 1]. This function results in a more ob-
vious separation between density of different scene compo-
nents (static object, moving object and media) in the same
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(a) Ground Truth (b) Proposed-T (c) MIP-360 [1] (d) Instant-NGP [5] (e) SeaThru-NeRF [4]

Figure S1. More qualitative comparisons on the SeaThru dataset [4]. Images are in high resolution, and please zoom-in for details.

(a) Ground Truth (b) Proposed (c) Instant-NGP [5] (d) SeaThru-NeRF [4] (e) DynamicNeRF [3]

Figure S2. Qualitative comparisons on the proposed dataset. Images are in high resolution, and please zoom-in for details.

position. Scene components with density proportion larger
than 0.5 will be given an weight factor larger than its orig-
inal proportion, while components with density proportion
less than 0.5 will obtain a smaller factor. Utilizing this sinu-
soidal function allows a more quickly convergence for our
model.

C. More results

Our proposed method is capable of representing underwa-
ter scenes consistently in both spacial and temporal dimen-
sions. We conduct several experiments to illustrate the con-
sistency of our model.

In addition to those already displayed in Fig. 4 of the
main paper, we show more results obtained by our method
under “Proposed-T” setting, Instant-NGP [5], SeaThru-
NeRF [4], and MIP-360 [1] on the SeaThru dataset [4].



“Proposed-T” refers to the architecture obtained by remov-
ing all time-related components in our proposed method.
Since SeaThru dataset [4] is composed of sparsely captured
photos and does not include temporal information, we train
with “Proposed-T” on this dataset. We demonstrate the
synthesized images on the validation view of the SeaThru
dataset [4] in Fig. 8. A patch is selected for closer observa-
tion on details. The proposed method can render vivid wa-
ter medium effects and also reconstruct the intricate struc-
tures. MIP-360 [1] and Instant-NGP [5], as state-of-the-art
NeRF methods for scenes above sea level, are ignorant of
the distance-dependent visibility. Therefore both of them
fail to reconstruct the correct appearance of the scene. In
especial, MIP-360 [1] fails to predict the depth of the scene
and results in even worse degenerated effects. SeaThru-
NeRF [4] manages to model the static scenes under water,
but struggles in high-frequency details due to its network
design, such as frequency-based encoding.

We also show qualitative results on the proposed dataset
in Fig. 9, comparing results obtained by the proposed
method, Instant-NGP [5], SeaThru-NeRF [4], and Dynam-
icNeRF [3]. Due to a lack of consideration of time dimen-
sion, Instant-NGP [5] and Seathru-NeRF [4] fail to model
the time-dependent changes in the scene. Blurry artifacts
are observed around the moving objects. By zooming in,
it is clear that Instant-NGP [5] cannot reconstruct as much
details as the proposed method. It also hinders the ray
termination estimation in MIP-NeRF [1], causing signifi-
cant degeneration in the rendered test view. Though Dy-
namicNeRF [3] is able to represent moving objects in the
scene, it neglects the absorbing and scattering effects of the
water medium, resulting in distortion in scene reconstruc-
tion. It also preserves fewer high-frequency details, since
the scene flow supervision in DynamicNeRF [3] leads to a
over-smoothness. Our proposed method distinctively mod-
els different underwater dynamics, achieving the most real-
istic results of underwater scene representation.

For a more intuitive comparison of the different methods,
we render a video with a fixed time step and changing cam-
era poses in CORAL, and another with a fixed camera pose
and changing time step in COMPOSITE. The latter shows
significant time-varying illumination and moving fish in the
scene, validating the proposed method. Please refer to the
project page for video.
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