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1. Details of reference decoder

In Section 3.2.3 of our main text, we propose a novel refer-
ence decoder to merge prior information into the decoding
and upsampling network, thus improving rendering quali-
ty. In Table 1, we show the architecture of the reference
decoder designed based on [1].

The network architecture of our CARN feature encoder
is shown in Fig. 1. The CARN feature encoder has glob-
al cascading connections represented as the blue arrows in
Fig. 1 (a). The outputs of intermediary cascading blocks
are cascaded into the higher layers, and finally converge on
a basic block (see Fig. 1 (b)). Each cascading block host-
s local cascading connections themselves, shown in Fig. 1
(d), and such local cascading is almost identical to a global
one, except that the unit blocks are residual blocks (see Fig.
1 (c)).
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Figure 1. Network structure of CARN feature encoder
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Upsamling
3× 1 Conv, 64 W
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W ×H × 3 Feature encoder 3× 1 Conv, 64 W ×H × 64

W ×H × 128

2nd CARN
feature encoder

3× 1 Conv, 64 W ×H × 64

W ×H × 64 Cascading Block W ×H × 64

W ×H × 128 Basic Block W ×H × 64

W ×H × 64 Cascading Block W ×H × 64

W ×H × 192 Basic Block W ×H × 64

W ×H × 64 Cascading Block W ×H × 64

W ×H × 256 Basic Block W ×H × 64

W ×H × 3 Feature decoder 3× 1 Conv, 3 W ×H × 3

Table 1. Architecture of the reference decoder. “Conv” is 2D con-
volution, and detailed structure of cascading block and basic block
is shown in Fig. 1.

2. Qualitative experiment results on VKITTI2
dataset

In Fig. 2 and Fig. 3, we show additional qualitative results
on the same Virtual KITTI-2 (VKITTI2) [2] subsequences
as in prior work [4–6]. We demonstrate PaReNeRF’s ca-
pabilities on both the image reconstruction and novel view
synthesis tasks. All the presented results show that, PaReN-
eRF achieves best results across all splits. As the number of
training views is reduced, SUDS fails to represent the scene
details and produces noise and ghosting artifacts. While our
method generates higher-quality renderings.
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Figure 2. Image reconstruction on VKITTI2 dataset. The first row is a sample of two scenes from the VKITTI2 dataset. The following
rows are some local details of the reconstruction results of the SUDS algorithm, our algorithm and the ground truth.
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Figure 3. Novel view synthesis on VKITTI2 dataset. We show some local details of the novel view synthesis results trained with different
proportion of VKITTI2 subsequence.



3. Ablation Details
In the first experiment, we did not apply any optimization
strategy and trained the SUDS model with the same KIT-
TI [3] subsequences and the same experimental setup de-
scribed in [6]. Then based on this baseline, we analyzed the
effects of applying patch sampling, encoder-decoder struc-
ture and reference decoder in sequence.

Effect of patch sampling. Compared with the baseline,
in this experiment, we only change random ray sampling to
patch sampling, and each batch includes 16 patches with a
size of 16× 16.

Effect of encoder-decoder structure. In this experi-
ment, we sample patches of rays and volume render a 2D
feature map on a lower-resolution (414 × 125), and then
leverage a 2D CNN to generate a high-resolution (1242 ×
375) RGB image. To further analyze the effect of introduc-
ing reference information later, we set the 2D CNN to the
CARN super-resolution network as shown in Fig. 4.
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Figure 4. CARN super-resolution network

To optimize this system, we use the losses described in
[6] to jointly optimize the radiance fields and the CNN net-
work. We only change C(r) in the L2 photometric loss

Lc(r) =

∥∥∥∥C(r)−
∧
C(r)

∥∥∥∥2 from the rendered RGB image

output by the SUDS radiance field to the reconstructed im-
age output by the CNN network.

Additionally, we tested the impact of the number of iter-
ations on training time and image quality.

Effect of reference decoder. This model is our PaReN-
eRF. Detailed design and experimental setup can be found
in Section 3 and 4 of our main text. We also evaluate the per-
formance under different iterations. Our PaReNeRF with
full components achieved the best results.
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