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1. A Proof of Theorem 1.
Restatement of Theorem 1 Given two random variables X ,
Y . Their mutual information I (X,Y ) and KL divergence
DKL (X||Y ) satisfy the unequal relationship as follows.

−I (X,Y ) ≤ DKL (X||Y ) . (1)

Proof. Suppose the probability density function (PDF) of
X and Y are p(x) and p(y), respectively; their join PDF is
p(x,y). We have

I (X,Y ) =
∑

p(x,y) log
p(x,y)

p(x) · p(y)
= DKL (p(x,y) || p(x) · p(y)) .

Well known, the KL divergence is non-negative [2]. Thus,

−I (X,Y ) ≤ 0 ≤ DKL (X||Y )

2. Evaluation Datasets
We evaluate four standard benchmarks below.
• Office-31 [16] is a small-scaled dataset including three

domains, i.e., Amazon (A), Webcam (W), and Dslr (D),
all of which are taken of real-world objects in various
office environments. The dataset has 4,652 images of 31
categories in total. Images in (A) are online e-commerce
pictures. (W) and (D) consist of low-resolution and high-
resolution pictures.

• Office-Home [23] is a medium-scale dataset that is mainly
used for domain adaptation, all of which contains 15k
images belonging to 65 categories from working or family
environments. The dataset has four distinct domains, i.e.,
Artistic images (Ar), Clip Art (Cl), Product images (Pr),
and Real-word images (Rw).

• VisDA [12] is a challenging large-scale dataset with 12
types of synthetic to real transfer recognition tasks. The
source domain contains 152k synthetic images (Sy), whilst
the target domain has 55k real object images (Re) from
the famous Microsoft COCO dataset.
*Corresponding author

• DomainNet-126 [13] is another large-scale dataset. As
a subset of DomainNet containing 600k images of 345
classes from 6 domains of different image styles, this
dataset has 145k images from 126 classes, sampled from
4 domains, Clipart (C), Painting (P), Real (R), Sketch (S),
as [17] identify severe noisy labels in the dataset.

3. Implementation Details
Souce model pre-training. For all transfer tasks on the
three datasets, we train the source model θs on the source
domain in a supervised manner using the following objective
of the classic cross-entropy loss with smooth label, like other
methods [8, 21, 25].

Ls (Xs,Ys; θs) = − 1

ns

ns∑
i=1

C∑
c=1

l̃si,c log p
s
i,c,

where ns is the number of the source data, psi,c is the c-th
element of ps

i = θs(x
s
i ) that is the category probability

vector of input instance xs
i after θs mapping; l̃si,c is the c-th

element of the smooth label [11] l̃
s

i = (1− σ) lsi + σ/C, in
which lsi is a one-hot encoding of hard label ysi and σ = 0.1.
The source dataset is divided into the training set and testing
set in a 0.9:0.1 ratio.

Network setting. The DIFO model contains two network
branches. In the target model branch, the feature extrac-
tor consists of a deep architecture and a fully-connected
layer followed by a batch-normalization layer. Same to the
previous work [8, 10, 15, 24, 25], the deep architecture is
transferred from the deep models pre-trained on ImageNet
(i.e., ResNet-50 is used on Office-31, Office-Home and
DomainNet-126, whilst ResNet-101 is adopted on VisDA).
The ending classifier is a fully-connected layer with weight
normalization. On the other hand, the ViL model branch
chooses the most adopted CLIP as the implementation where
the text encoder’s transformer-based architecture follows
modification proposed in [14] as the backbone. Regarding
the image encoder, we adopt two versions corresponding to
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Table 1. Full results (%) of Closed-set SFDA on VisDA. SF and M mean source-free and multimodal, respectively.

Method Venue SF M plane bcycl bus car horse knife mcycl person plant sktbrd train truck Perclass

Source - - - 60.7 21.7 50.8 68.5 71.8 5.4 86.4 20.2 67.1 43.3 83.3 10.6 49.2

DAPL-RN [3] TNNLS23 ✗ ✓ 97.8 83.1 88.8 77.9 97.4 91.5 94.2 79.7 88.6 89.3 92.5 62.0 86.9
PADCLIP-RN [6] ICCV23 ✗ ✓ 96.7 88.8 87.0 82.8 97.1 93.0 91.3 83.0 95.5 91.8 91.5 63.0 88.5
ADCLIP-RN [19] ICCVW23 ✗ ✓ 98.1 83.6 91.2 76.6 98.1 93.4 96.0 81.4 86.4 91.5 92.1 64.2 87.7

SHOT [8] ICML20 ✓ ✗ 95.0 87.4 80.9 57.6 93.9 94.1 79.4 80.4 90.9 89.8 85.8 57.5 82.7
NRC [25] NIPS21 ✓ ✗ 96.8 91.3 82.4 62.4 96.2 95.9 86.1 90.7 94.8 94.1 90.4 59.7 85.9
GKD [20] IROS21 ✓ ✗ 95.3 87.6 81.7 58.1 93.9 94.0 80.0 80.0 91.2 91.0 86.9 56.1 83.0
AaD [26] NIPS22 ✓ ✗ 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
AdaCon [1] CVPR22 ✓ ✗ 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8
CoWA [7] ICML22 ✓ ✗ 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
SCLM [21] NN22 ✓ ✗ 97.1 90.7 85.6 62.0 97.3 94.6 81.8 84.3 93.6 92.8 88.0 55.9 85.3
ELR [27] ICLR23 ✓ ✗ 97.1 89.7 82.7 62.0 96.2 97.0 87.6 81.2 93.7 94.1 90.2 58.6 85.8
PLUE [9] CVPR23 ✓ ✗ 94.4 91.7 89.0 70.5 96.6 94.9 92.2 88.8 92.9 95.3 91.4 61.6 88.3
TPDS [22] IJCV23 ✓ ✗ 97.6 91.5 89.7 83.4 97.5 96.3 92.2 82.4 96.0 94.1 90.9 40.4 87.6
DIFO-C-RN - ✓ ✓ 97.7 87.6 90.5 83.6 96.7 95.8 94.8 74.1 92.4 93.8 92.9 65.5 88.8
DIFO-C-B32 - ✓ ✓ 97.5 89.0 90.8 83.5 97.8 97.3 93.2 83.5 95.2 96.8 93.7 65.9 90.3

| Office-31 | Office-Home VisDA DomainNet-126 ||

| Office-31 | Office-Home VisDA DomainNet-126 ||

Figure 1. Transfer performance comparison of DIFO and CLIP on all tasks of the four evaluation datasets. Top: DIFO-C-RN v.s. CLIP-RN.
Bottom: DIFO-C-B32 v.s. CLIP-B32.

the two implementations of DIFO in this paper, including
DIFO-C-B32 and DIFO-C-RN. Specifically, in DIFO-C-
B32, image encoders follow ViT-B/32 architecture proposed
in CLIP [14] while DIFO-C-RN uses ResNet [4] as the
backbone. The same as the target model mentioned above,
ResNet-101 is adopted on VisDA and ResNet-50 is used on
the rest datasets.

Parameter setting. For the trade-off parameter α and β in
the objective LPC (Eq. (6)) and LMKA (Eq. (7)) is set to

1.0 and 0.4 on all datasets, respectively. The parameter of
Exponential distribution λ in Eq. (4) is specified to 10.0. The
temperature parameters in Eq. (5) are τ = 0.1. The number
of the most-likely categories is set to N = 2.

Training setting. We adopt the batch size of 64, SGD op-
timizer with momentum 0.9 and 15 training epochs on all
datasets. The prompt template for initiation is the mostly
used ’a photo of a [CLASS].’ [14] where [CLASS] stands for
the class name. All experiments are conducted with PyTorch



Table 2. Full results (%) of Partial-set SFDA and Open-set SFDA on Office-Home.

Partial-set SFDA Venue Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Source – 45.2 70.4 81.0 56.2 60.8 66.2 60.9 40.1 76.2 70.8 48.5 77.3 62.8

SHOT [8] ICML20 64.8 85.2 92.7 76.3 77.6 88.8 79.7 64.3 89.5 80.6 66.4 85.8 79.3
HCL [5] NIPS21 65.6 85.2 92.7 77.3 76.2 87.2 78.2 66.0 89.1 81.5 68.4 87.3 79.6
CoWA [7] ICML22 69.6 93.2 92.3 78.9 81.3 92.1 79.8 71.7 90.0 83.8 72.2 93.7 83.2
AaD [26] NIPS22 67.0 83.5 93.1 80.5 76.0 87.6 78.1 65.6 90.2 83.5 64.3 87.3 79.7
CRS [28] CVPR23 68.6 85.1 90.9 80.1 79.4 86.3 79.2 66.1 90.5 82.2 69.5 89.3 80.6
DIFO-C-B32 – 70.2 91.7 91.5 87.8 92.6 92.9 87.3 70.7 92.9 88.5 69.6 91.5 85.6
Open-set SFDA Venue Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Source – 36.3 54.8 69.1 33.8 44.4 49.2 36.8 29.2 56.8 51.4 35.1 62.3 46.6

SHOT [8] ICML20 64.5 80.4 84.7 63.1 75.4 81.2 65.3 59.3 83.3 69.6 64.6 82.3 72.8
HCL [5] NIPS21 64.0 78.6 82.4 64.5 73.1 80.1 64.8 59.8 75.3 78.1 69.3 81.5 72.6
CoWA [7] ICML22 63.3 79.2 85.4 67.6 83.6 82.0 66.9 56.9 81.1 68.5 57.9 85.9 73.2
AaD [26] NIPS22 63.7 77.3 80.4 66.0 72.6 77.6 69.1 62.5 79.8 71.8 62.3 78.6 71.8
CRS [28] CVPR23 65.2 76.6 80.2 66.2 75.3 77.8 70.4 61.8 79.3 71.1 61.1 78.3 73.2
DIFO-C-B32 – 64.5 86.2 87.9 68.2 79.3 86.1 67.2 62.1 88.3 71.9 65.3 84.4 75.9

Figure 2. Grad-CAM visualization of DIFO-C-B32 and typical
comparison methods on toy samples selected from VisDA. Figure 3. The evolving dynamics of model learning attention based

on DIFO-C-B32. The red bounding box indicates the failure case.

on a single GPU of NVIDIA RTX.

4. Supplementation of Full Experiment Results
Full results on VisDA. As the supplement of results on
VisDA, Tab. 1 presents the full classification details over
the 12 categories. It is seen that DIFO-C-RN and DIFO-
C-B32 obtain the best results in 7/12 categories compared
with SFDA methods. Meanwhile, DIFO-C-RN and DIFO-
C-B32 are on top of the second best UDA results in 8/12
categories. Also, we note that the UDA method of ADCLIP
beats DIFO-C-RN and DIFO-C-B32 on four transfer tasks. It
is understandable that ADCLIP use the labelled source data,
whilst our method cannot access the source data. Despite
this, DIFO still presents advantages over these source data-
required method (see the average accuracy).

Full results of comparison to CLIP. As the supplemen-
tation of these domain-grouped results reported in the pa-

per, Fig. 1 gives a comprehensive visualization compari-
son with CLIP in the perspective of all 31 transfer tasks on
the four evaluation datasets. It is seen that the results of
DIFO (marked by green circles) are above CLIP (marked by
orange circles) on all tasks, whether we use DIFO-C-RN or
DIFO-C-B32.

Full results of Partial-set and Open-set SFDA. As the
supplementation of these average results in Tab. 5, Tab. 2
gives the full classification accuracy over 12 transfer tasks in
the Office-Home dataset. As the top in Tab. 2, DIFO-C-B32
obtains best results on 9/12 tasks in the Partial-set SFDA and
on the half tasks in the Open-set SFDA.

5. Expanded Model Analysis
Grad-CAM visualization. In Fig. 2, we present the Grad-
CAM visualization [18] comparison with the source model
and two typical SFDA methods, SHOT and SCLM, based
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Figure 4. Performance sensitivity of the hyper-parameters. From
(a) to (d), the four sub-figures present the accuracy changing as the
parameters α, β, N and λ varying, respectively.

on self-supervised learning without ViL model help. For the
single object-contained images (see 1∼3 column), DIFO-
C-B32’s attention focuses on the target object, whilst other
methods cover the entire image. Regarding the multi-object-
contained images (see 4∼6 column), DIFO-C-B32’s atten-
tion is more consistent with the target semantics given by
the real labels than other methods focusing on the wrong ob-
ject. These results explain the effectiveness of DIFO-C-B32
integrating the domain generality of the ViL model and the
task specificity of the source model.

Attention-based evolving dynamics. To better understand
the working of DIFO, this part visualizes the evolving dy-
namics of model learning attention during the training phase.
For a clear view, we display the Grad-CAM visualization
results at some typical iterations, as shown in Fig. 3. Among
the rightly classified images (the top four rows), the attention
smoothly concentrates to the discriminative visual patch. In
contrast, the attention of the misclassified image (the last
row) converges to the meaningless one.

Sensitivity of hyper-parameter. In the DIFO method, α, β
are trade-off parameters in objective LPC (see Eq. (6)) and
LMKA (see Eq. (7)). λ is the parameter of Exponential distri-
bution in Eq. (4), whilst N is the number of the most-likely
categories. This part discusses their performance sensitivity
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Figure 5. The confusion matrix for 12-way classification on VisDA.
Left: Source model result, Right: DIFO-C-B32 result.
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Figure 6. Classification accuracy varying curve comparison on
VisDA during the adaptation phase.

based on the symmetric transfer tasks Cl→Ar and Ar→Cl
in the Office-Home dataset. As depicted in Fig. 4 (a), (b)
and (d), when these parameters changes, there are no evi-
dent drops in the accuracy variation curves. This indicates
that DIFO is insensitive to parameters α, β and λ. As for
N , the accuracy gradually decreases as N increases. This
phenomenon is consistent with our expectation that small N
is better and a large value will introduce the semantic noise.

Confusion matrix. To present a quantitative observation on
the category, this part gives the confusion matrix based on the
classification results on the VisDA dataset. For comparison,
we show the confusion matrix of the source model at the left
side of Fig. 5. In the no-adaptation case, the misclassified
data scatter over the matrix. After adaptation, the misclassi-
fied data are evidently corrected by DIFO-C-B32 at the right
side of Fig. 5. It is seen that DIFO-C-B32 improves perfor-
mance on all categories, and on some categories achieving
significant growth. For instance, in the second category, the
performance promotes by 68% (from 21% to 89%).

Training stability. Training stability is a vital characteristic
of supervised learning methods. Based on the large-size
dataset VisDA, we present the adaptation details of DIFO-



C-B32 using the accuracy varying curves on the target do-
main. For comparison, the curves of typical self-supervised
methods, SHOT, SCLM and TPDS, are also depicted. As
shown in Fig. 6, the accuracy gradually increases to the
maximum. This result confirms the training stability of
DIFO-C-B32. Also, DIFO-C-B32 converges much faster
than SHOT, SCLM and TPDS. It indicates that introducing
task-specific knowledge from the ViL model is helpful in
boosting the source model adaptation.
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