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(a) Sparse Submanifold Convolution (b) Sparse Convolution

Figure A. Comparison between sparse submanifold convolu-
tion and sparse convolution. For simplicity, 2D feature map and
2D kernels are utilized.

A. Sparse Convolution Description

We detail the difference between sparse submanifold convo-
lution and sparse convolution [3] in a 2D sparse view in A.
As can be seen, submanifold convolution only operates on
occupied voxels, thus ensuring that an output location is
active only if the corresponding input location is active,
thereby maintaining sparsity even when stacking multiple
layers. On the other hand, a sparse convolution performs
the computation in a local window in which at least one
non-empty voxel resides, allowing the diffusion of features
from non-empty voxels to their neighbors. Hence, we use
sparse convolution for scene completion and submanifold
convolution for contextual feature exchange.

B. More Experiments

B.1. Scaling up the 3D resolution.

We utilize LSS [7] to lift the 2D image features to 3D vol-
ume from which we extract 3D sparse representation. The
3D feature resolution of the volume output by LSS may af-
fect the performance. For efficiency, we use SparseOcc with
a linear layer segmentation head to study it. As shown in Ta-

* Corresponding author: chaoma@sjtu.edu.cn.

Type 3D resolution IoU mIoU

SparseOcc-Linear 128×128×16 36.8 11.8
256×256×256 36.4 12.3

Table A. Scaling up the 3D representation resolution on Se-
manticKITTI [1] validation set.
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Figure B. Efficiency analysis when scaling up the 3D represen-
tation on SemanticKITTI [1] validation set. The left axis repre-
sents the inference GPU memory. The right axis denotes the num-
ber of voxels. The 3D downsampling ratio is considered between
the ground-truth and the LSS output. The number of non-empty
voxels is measured using max-donwsampled ground-truth.

ble. A, scaling up the size of LSS output by 2× boosts the
mIoU from 11.8 to 12.3 while decreasing the geometry IoU
by 0.4. We guess the IoU drop is caused by the number of
sparse completion blocks, as it may not be enough to com-
plete the whole scene in a bigger resolution. This problem
can be resolved by stacking one more sparse completion
block at the last layer of the 3D sparse encoder.
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RangeNet++ [6] LiDAR

- -

65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet [8] LiDAR 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext [4] LiDAR 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
Cylinder3D [10] LiDAR 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4

TPVFormer [5] Camera
R50

850×450 59.3 64.9 27.0 83.0 82.8 38.3 27.4 44.9 24.0 55.4 73.6 91.7 60.7 59.8 61.1 78.2 76.5
OccFormer [9] Camera 704×256 68.1 69.2 36.9 91.2 84.4 47.3 59.1 61.9 42.1 58.8 82.8 93.0 67.5 67.4 68.5 81.0 78.5
SparseOcc (ours) Camera 704×256 68.4 69.1 40.4 89.1 85.0 49.9 71.0 62.0 38.1 58.1 79.4 92.9 65.8 66.2 67.0 80.9 78.9

Table B. LiDAR segmentation results on nuScenes validation set. For vision-based methods, we list the utilized image backbone and
the input image sizes. The bold numbers indicate the best results in the whole table and the green numbers indicate the best results in
vision-based methods.

bicycle car motorcycle truck other vehicle person bicyclist motorcyclist
sidewalk vegetationother ground

parkingroad
trunk terrainfence traffic signpolebuilding

Input Image OccFormer SparseOcc Ground-Truth

Figure C. Qualitative results of 3D semantic scene completion on SemanticKITTI [1] validation set. The input monocular image
is shown on the left, and the 3D semantic scene completion results from OccFormer [9], our SparseOcc, and the ground-truth are then
visualized sequentially.



B.2. Efficiency analysis.

The complexity of our SparseOcc should be roughly linear
to the number of non-empty voxels since it only operates on
feature-occupied voxels. We compare the inference GPU
memory and the number of non-empty voxels in Fig. B. As
can be observed, when scaling up the 3D resolution from
2× to 1×, the 3D dense representation based method Oc-
cFormer [9] sufferes from a steep inference GPU memory
rise while our SparseOcc presents a linear increase to the
non-empty voxels, which justifies the superior efficiency of
3D sparse representation.

B.3. Point Cloud Semantic Segmentation

Following the former practices [5, 9], we report the point
cloud semantic segmentation results on nuScenes [2] val-
idation set. Different from semantic occupancy predic-
tion, point cloud segmentation does not have to predict the
“empty” class and reconstruct the occluded part. We build
the model as the same as the semantic occupancy predic-
tion but only use point cloud semantic labels for supervi-
sion. As displayed in Table. B, our SparseOcc outperforms
the vision-based methods, i.e., TPVFormer [5] and Occ-
Former [9] by 9.1 and 0.3 mIoU. Note that TPVFormer uses
2D projection based representation and OccFormer uses 3D
dense representation, while SparseOcc uses efficient 3D
sparse representation. Moreover, SparseOcc also achieves
comparable accuracy with the state-of-the-art LiDAR-based
methods [4, 6, 8, 10], which further demonstrates the gen-
eralization ability and potential of the proposed 3D sparse
latent representation.

C. Additional Visualizations.
We visualize the predicted results of semantic scene com-
pletion from OccFormer [9] and our proposed SparseOcc
on SemanticKITTI [1] validation set. As can be ob-
served from Fig. C, SparseOcc mitigates the hallucina-
tions on empty voxels compared with OccFormer. We
blame the hallucinations of OccFormer on dense opera-
tors like large-window Swin Transformer blocks and 3D
deformable self-attention, while our SparseOcc represents
the scene with 3D sparse representation and only operates
on feature-occupied voxels, thus relieving the hallucination
problem.
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