
AlignMiF: Geometry-Aligned Multimodal Implicit Field for

LiDAR-Camera Joint Synthesis

Supplementary Material

7. Limitations and Future work

As this paper is the first to reveal the misalignment issue in
multimodal learning in NeRF, there remains room for im-
provement, which we would like to address in future work.
As such, it is better suited to static scenes. Fortunately,
there have been notable advancements in handling dynamic
scenes [29, 50, 53, 55], and our decomposed encoding for-
mulation can be seamlessly integrated with these advances.
Moreover, for each dataset, it is necessary to search for the
optimal alignment level of the coarse geometry. As indi-
cated by the dynamic network technology [12], develop-
ing dynamic search levels holds the potential for further
improvements in the alignment process. Furthermore, ex-
ploring more powerful fusion modules for alignment repre-
sents a promising research direction. Another impact of our
coarse geometry alignment is the incorporation of multiple
hash encoders, which introduce additional model parame-
ters and computation. Nonetheless, we optimize per scene
with two to three hours on a single NVIDIA GeForce RTX
3090 GPU, which is still much more cost-effective com-
pared to traditional handcrafted game-engine-based virtual
worlds [8, 34, 35], and there also have been efforts [6, 51]
in improving the efficiency of hash encoders. Altogether,
we hope that our work will inspire other researchers to con-
tribute to the development of multimodal NeRF.
Discuss dynamic foreground objects. In Fig. 9, we il-
lustrate the approach for dynamic scenes, where dynamic
objects are modeled separately with the static background,
and each object is transformed into its object-centroid co-
ordinate system. This allows us to treat each object field as
a small static scene, which can be directly extended to our
AlignMiF. Additionally, dynamic objects pose more chal-
lenges, and our AlignMiF can provide fusion models with
different levels of alignment for the dynamic objects and
static background, providing a comprehensive solution.
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Figure 9. The illustration of handling dynamic objects.

8. Additional Details

Dataset. AIODrive consists of 100 video sequences gen-
erated by the CARLA Simulator, comprising about 100k

Table 6. Ablation study for the coarse geometry levels.

Dataset Levels RGB Metric LiDAR Metric

PSNR" SSIM" C-D# F-score"

4 23.68 0.773 0.080 0.929
KITTI-360 8 25.20 0.816 0.077 0.932

16 24.49 0.803 0.091 0.921

6 28.73 0.834 0.156 0.892
Waymo 9 29.22 0.841 0.151 0.896

12 28.72 0.835 0.155 0.891

labeled images and point cloud data. For our investiga-
tion, we utilize the provided mini-version of the dataset and
masked the dynamic objects as Nerfstudio [41]. We se-
lect every 15th image in the sequences as the test set and
take the remaining ones as the training set. KITTI-360 is a
large-scale dataset containing over 320k images and 100k
laser scans collected in urban environments with a driv-
ing distance of around 73.7 km. We select 4 static suburb
sequences as PNF [10] and LiDAR-NeRF [42]. Each se-
quence contains 64 frames, with 4 equidistant frames for
evaluation. For Waymo Open Dataset, we also select the 4
sequences mainly containing static objects for our experi-
ments. We reserve every 10th frame as a test view and use
the remaining about 188 samples for training.
Implementation details. Our AlignMiF is implemented
based on open-source LiDAR-NeRF [42]. We optimize
our AlignMiF model per scene with two to three hours
of training time using a single NVIDIA GeForce RTX
3090 GPU. We use Adam [17] with a learning rate of 1e-
2 to train our models. The coarse and fine networks are
sampled 768 and 64 samples per ray, respectively. The
finest resolution of the hash encoding is set to 32768.
To better evaluate and compare the synthesis capability
for details, we train and evaluate our methods and all
the baselines with full-resolution images and LiDAR in-
put. All ablation and analysis experiments were conducted
on the sequence seq-1908-1971 of KITTI-360 dataset and
the segment 17761959194352517553 5448 420 5468 420

of Waymo dataset, which both are large scenes with numer-
ous objects, making them ideal sequences for comparison.

9. Additional Results

Ablations on the coarse geometry levels. As shown in
Tab. 6, for each dataset, we search for the optimal alignment
level, i.e., the �, of the coarse geometry. As indicated by



KITTI-360

Waymo

Camera LiDAR

OursSingle Modality Neural Implicit Fusion

Figure 10. The misalignment issue in multimodal implicit field.

For implicit neural fusion, there is a trade-off between the modal-
ities due to the misalignment, making it challenging to improve
both modalities simultaneously. Conversely, our method addresses
the misalignment issue and achieves boosted multimodal perfor-
mance. The horizontal axis denotes the weight ratio between the
camera and LiDAR modality, �c/�l.

the dynamic network technology [12], developing dynamic
search levels holds the potential for further improvements
in the alignment process, and we left it as future work.
Misalignment issue in the multimodal implicit field. Pre-
vious multimodal implicit fields, e.g., UniSim [55], ex-
plored fusing multiple modalities within a single field, aim-
ing to share implicit features from different modalities to
enhance performance. However, the misaligned modalities
often contradict each other, and as shown in Fig. 10, the line
plot clearly illustrates a trade-off between the modalities:
optimizing for one modality, such as the camera, can have
a negative impact on the performance of another modality,
such as LiDAR, and vice versa. In contrast, our AlignMiF
effectively addresses the misalignment issue and achieves
enhanced multimodal performance, as demonstrated by the
bar chart in Fig. 10. We also provide qualitative visualiza-
tion in Fig. 11.
Misalignment issue and different FOV. In Sec. 5.3, we
attempted to detach the gradient of density from the cam-
era modality to avoid geometry conflicts, i.e., Detach RGB

Density, which is similar to gradients blocking in Panoptic-
Lifting [36], but the FOV mismatch and misalignment is-
sue have become significant obstacles as shown in Fig. 12.
From (a)(b)(c), we can observe that the two modalities had

Figure 11. The misalignment issue in multimodal implicit field.

Implicit fusing misaligned modalities leads to suboptimal results,
i.e., the blurred image and messy points, as depicted in the figure.
Our AlignMiF enhances the alignment and fusion between LiDAR
and camera modalities, leading to more accurate join synthesis of
novel views (zoom-in for the best of views).

different FOVs, resulting in the training being effective only
in the pre-trained LiDAR FOV. Moreover, as demonstrated
in Fig. 2 of Sec. 3.3 and (a)(c), LiDAR and camera exhibit
variances in capturing finer details. Therefore, when solely
relying on LiDAR for optimizing geometry, the resulting
camera image and depth are both unsatisfactory, as illus-
trated by the distorted and thicker pole in (b) and (d). These
figures further emphasize the importance of addressing the
misalignment issue.

State-of-the-art results on AIODrive dataset. As shown
in Tab. 7, our AlignMiF, achieves superior results even
on the AIODrive synthetic dataset without the misalign-



Figure 12. Misalignment issue and different FOV of LiDAR

and camera. (a) Original image, (b) Rendered image, (c) Ren-
dered image with projected points from associate LiDAR frame,
(d) Rendered image depth.

Table 7. State-of-the-art results on AIODrive dataset.

Method M RGB Metric LiDAR Metric

PSNR" SSIM" C-D# F-score"

i-NGP [27] C 34.43 0.893 – –
LiDAR-NeRF [42] L – – 0.178 0.873

UniSim-SF [55] LC 34.53 (+) 0.904 0.153 (+) 0.905
AlignMiF (Ours) LC 34.82 (+) 0.908 0.123 (+) 0.915
M, L, C denotes modality, LiDAR, camera respectively.

ment issue, outperforming the previous implicit fusion ap-
proach. This can be attributed to the fact that despite having
the same underlying scene geometry, the required features
for different modalities and representations might differ
slightly, such as the LiDAR intensity and image color. This
also aligns with the results of Share Coarse-Geo in Tab. 5 of
Sec. 5.3 and the observation in Panoptic-Lifting [36]. These
results both demonstrate the efficiency of our network de-
sign.

Details results on KITTI-360 and Waymo datasets. We
report detailed results on the sequences of the KITTI-360
and Waymo datasets in Tab. 10. Our AlignMiF consistently
outperforms the baselines over all sequences in all metrics.
The details of sequences are also shown in Tab. 10.

Table 8. Enhancing the detection model with AlignMiF.

Method L1 mAP L1 mAPH L2 mAP L2 mAPH

TransFusion [1] 38.71 35.05 33.98 30.79
+ AlignMiF 40.18 (+1.47) 36.39(+1.34) 35.31(+1.33) 32.01 (+1.22)

Table 9. Computational cost (microsecond) for rendering 4096

rays.

Method Hash-Encoding Geo-MLP Color-MLP

UniSim-SF [55] 86 72 96
AlignMiF 86 (SGI) + 156 (GAA) 72 96

Boosting downstream applications. We are eager to ex-
plore the potential benefits of improving downstream ap-
plications. We choose the powerful LiDAR-camera fusion
detection method TransFusion [1] and employ our Align-
MiF to generate more diverse sensor data for data augmen-
tation. Due to computational constraints, we conducted ex-
periments on a limited number of Waymo scenes. The re-
sults in Tab. 8 demonstrate the effectiveness of our approach
in enhancing the performance of the downstream model.
Computational complexities. In Tab. 9, we present the
computational cost to facilitate further research.

9.1. Qualitative Results

Qualitative results on KITTI-360 dataset. We provide
more qualitative results on KITTI-360 dataset in Fig. 13 and
Fig. 15, which show the mutual benefits of our AlignMiF.
The LiDAR modality significantly improves the learning of
image and depth quality in the camera, while the semantic
information from RGB assists the LiDAR in better converg-
ing to object boundaries.
Qualitative results on Waymo dataset. We provide more
qualitative results on the Waymo dataset in Fig. 14 and
Fig. 15, which demonstrate that the proposed AlignMiF sig-
nificantly enhances the alignment and fusion between Li-
DAR and camera modalities, leading to more accurate join
synthesis of LiDAR and camera novel views.
Video demo. In addition to the figures, we have attached a
video demo in the supplementary materials, which consists
of hundreds of frames that provide a more comprehensive
evaluation of our proposed approach.



Table 10. Novel view synthesis on KITTI-360 dataset and Waymo dataset. AlignMiF outperforms the baselines in all metrics.

Method M
KITTI-360 Dataset Waymo Dataset

RGB Metric LiDAR Metric RGB Metric LiDAR Metric
PSNR" SSIM" LPIPS# C-D# F-score" MAE# PSNR" SSIM" LPIPS# C-D# F-score" MAE#

Sequence Seq 1538–1601 seg11379226583756500423 6230 810 6250 810

i-NGP [27] C 25.22 0.831 0.175 – – – 29.26 0.825 0.369 – – –
LiDAR-NeRF [42] L – – – 0.088 0.925 0.106 – – – 0.216 0.853 0.026
UniSim-SF [55] LC 22.92 (-) 0.746 0.328 0.083 (+) 0.927 0.103 26.90 (-) 0.777 0.399 0.199 (+) 0.854 0.027
UniSim-SF [55]O LC 25.25 (+) 0.827 0.184 0.109 (-) 0.904 0.102 29.35 (+) 0.825 0.367 0.359 (-) 0.761 0.030
AlignMiF LC 25.67 (+) 0.837 0.176 0.079 (+) 0.930 0.106 30.16 (+) 0.838 0.331 0.191 (+) 0.863 0.026

Sequence Seq 1728–1791 seg10676267326664322837 311 180 331 180

i-NGP [27] C 24.90 0.816 0.167 – – – 29.52 0.861 0.299 – – –
LiDAR-NeRF [42] L – – – 0.107 0.895 0.111 – – – 0.264 0.841 0.026
UniSim-SF [55]M LC 23.86 (-) 0.782 0.228 0.097 (+) 0.909 0.094 26.47 (-) 0.808 0.341 0.254 (+) 0.848 0.026
UniSim-SF [55]O LC 25.38 (+) 0.823 0.167 0.127 (-) 0.891 0.093 29.54 (+) 0.862 0.297 0.612 (-) 0.704 0.039
AlignMiF LC 25.43 (+) 0.836 0.148 0.086 (+) 0.913 0.096 30.27 (+) 0.873 0.273 0.228 (+) 0.859 0.025

Sequence Seq 1908–1971 seg17761959194352517553 5448 420 5468 420

i-NGP [27] C 24.45 0.787 0.184 – – – 28.20 0.830 0.372 – – –
LiDAR-NeRF [42] L – – – 0.088 0.920 0.159 – – – 0.179 0.885 0.049
UniSim-SF [55]M LC 23.54 (-) 0.759 0.235 0.087 (+) 0.929 0.097 26.41 (-) 0.789 0.403 0.173 (+) 0.891 0.049
UniSim-SF [55]O LC 24.65 (+) 0.803 0.172 0.111 (-) 0.912 0.097 28.33 (+) 0.830 0.369 0.227 (-) 0.840 0.052
AlignMiF LC 25.20 (+) 0.816 0.160 0.077 (+) 0.932 0.101 29.22 (+) 0.841 0.327 0.151 (+) 0.896 0.048

Sequence Seq 3353–3416 seg1172406780360799916 1660 000 1680 000

i-NGP [27] C 23.88 0.800 0.199 – – – 28.30 0.810 0.480 – – –
LiDAR-NeRF [42] L – – – 0.094 0.927 0.112 – – – 0.127 0.908 0.057
UniSim-SF [55]M LC 22.90 (-) 0.746 0.283 0.091 (+) 0.933 0.093 26.91 (-) 0.778 0.526 0.118 (+) 0.919 0.056
UniSim-SF [55]O LC 24.51 (+) 0.797 0.213 0.110 (-) 0.919 0.091 28.72 (+) 0.816 0.463 0.225 (-) 0.841 0.058
AlignMiF LC 24.91 (+) 0.815 0.175 0.082 (+) 0.937 0.096 29.47 (+) 0.828 0.427 0.107 (+) 0.921 0.054

Average Average

i-NGP [27] C 24.61 0.808 0.181 – – – 28.82 0.831 0.380 – – –
LiDAR-NeRF [42] L – – – 0.094 0.916 0.122 – – – 0.197 0.871 0.040
UniSim-SF [55]M LC 23.30 (-) 0.758 0.268 0.090 (+) 0.924 0.097 26.67 (-) 0.788 0.417 0.186 (+) 0.878 0.039
UniSim-SF [55]O LC 24.94 (+) 0.812 0.184 0.114 (-) 0.906 0.095 28.98 (+) 0.833 0.374 0.355 (-) 0.786 0.045
AlignMiF LC 25.31 (+) 0.826 0.164 0.081 (+) 0.928 0.099 29.78 (+) 0.845 0.339 0.169 (+) 0.885 0.038
M, L, C denotes modality, LiDAR, camera respectively. M and O represent tuning parameters towards LiDAR and camera modality respectively.



Figure 13. Qualitative results of the camera on KITTI-360 dataset. Our AlignMiF enhances information interactions between
modalities and improves image and depth quality in the camera using LiDAR information.



Figure 14. Qualitative results of the camera on Waymo dataset. Our AlignMiF enhances information interactions between modalities
and improves image and depth quality in the camera using LiDAR information.
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Figure 15. Qualitative results of the LiDAR on KITTI-360 and Waymo datasets. Our AlignMiF enhances information interactions
between modalities and semantic information from the camera aids the LiDAR in better converging to object boundaries (zoom-in for the
best of views). Visualizing from a single perspective may not provide a comprehensive analysis of the LiDAR in 3D space. It’s encouraged
to try our code and models, and use 3D-view tools for a more comprehensive understanding of our method’s superiority.
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