
Revisiting Global Translation Estimation with Feature Tracks

Supplementary Material

This supplementary material consists of three sections.
Section I provides a detailed derivation of some formulas
mentioned in the main paper. Section II offers an in-depth
discussion of the HETA method, encompassing implemen-
tation details for each step of Algorithm 1 in the main pa-
per, along with a comprehensive understanding of the ad-
vantages of using hybrid constraints, explicit 3D points,
and cross-product-form objective functions. Section III en-
compasses supplementary experiments and results not pre-
sented in the main paper due to space limitations. These
include a comparison of running times for various objective
functions and reconstruction results for the 1DSfM dataset
using HETA and several state-of-the-art methods.To avoid
conflicts with the index of formulas in the main text, the for-
mula index in the supplementary material starts from (12).

I. Formula Derivations
I.1. Formula Derivation for Eq. (7)

For an orthogonal rotation matrix R ∈ R3×3, the cross
product of two vectors a, b ∈ R3 satisfies:

R(a× b) = Ra×Rb. (12)

From Eq. (12), with known global rotations, the coplanarity
constraint in epipolar geometry can be rewritten as:

Xkj · (tij ×RijXki) = 0

⇔ (RijXki ×Xkj)
T tij = 0

⇔ (RijXki ×Xkj)
T (RjR

T
j )tij = 0

⇔ (RT
j (RijXki ×Xkj))

TRT
j tij = 0

⇔ (RT
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j Xkj)
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⇔ (fki × fkj) · vij = 0.

(13)

I.2. Formula Derivation for Eq. (3)

From Fig. 2, since two adjacent triangles {Pk − tl − tr}
and {Pk − tl − ti} have a common edge, according to the
sine theorem, we have:

||PK − tl||2 =
||tl − tr||2 · sin θr

sinαlr
=
||tl − ti||2 · sin θi

sinαli
.

(14)
From the second equation in Eq. (14), the ratio of two cam-
era baselines is computed as shown in Eq. (3).

I.3. Formula Derivation for Eq. (4)

Compared to the raw LiGT constraint in [8], we rewrite it
in the global coordinate system and give a geometric inter-

pretation to it with the implicit 3D point Pk. The rewritten
constraint can be transformed into the raw LiGT constraint
in the local camera coordinate system with the Eq. (12).

||Pk − tl||2 =
||tl − tr||2 · sin θr

sinαlr

=
||fkr × (tl − tr)||2
||fkl × fkr||2

=
||fkl × fkr||2 · ||fkr × (tl − tr)||2
||fkl × fkr||2 · ||fkl × fkr||2

=
(fkl × fkr) · (fkr × (tl − tr))

||fkl × fkr||22

=
((fkl × fkr)× fkr) · (tl − tr)

||fkl × fkr||22
.

(15)

II. Detailed Discussion of HETA
II.1. Detail Pipeline of HETA

In this section, we provide comprehensive details for
each step in the HETA pipeline. To begin, we outline the
implementation of relative translation re-estimation. Since
the re-estimation of each relative translation is independent,
all relative translations can be efficiently estimated in paral-
lel. The algorithm for re-estimating one relative translation
is demonstrated below:

Algorithm 2 Relative translation re-estimation
Input: Global camera rotations Ri,Rj , feature matches set Mij =
{(Xil, Xjr), · · · } for image i and image j, where Xil, Xjr ∈ R3 is
the coordinate of feature points in local camera coordinate system and
l, r are respectively the index of the feature point in two images, and
the loss width β.

Output: Re-estimated relative translation in the global coordinate system
vij , a set of filtered feature matches M ′

ij .
1: Initialize an empty set for normal vectors Nij = ∅ and an empty set

for filtered feature matches M ′
ij = ∅;

2: for (Xil, Xjr) in Mij do
3: Calculate feature rays with known global rotations by Eq. (2);
4: Calculate the unnormalized normal vector nlr and the parallax an-

gle αlr through the cross product of two feature rays;
5: if α > A then
6: Insert nlr into Nij

7: end if
8: end for
9: Estimate vij with all normal vectors in Nij by Eq. (9);

10: for nlr in Nij do
11: if vij ·nlr

||vij ·nlr||2
< β and (Xil, Xjr) complies with cheirality con-

straints then
12: Insert (Xil, Xjr) into M ′

ij
13: end if
14: end for

Following the re-estimation of relative translations, the



one-dimensional projection method in 1DSfM [54] is em-
ployed for filtering relative translation outliers with their
connection relationship in the view graph. Subsequently,
with the filtered feature matches from filtered relative trans-
lations, the comprehensive algorithm for constructing and
selecting reliable feature tracks is outlined below:

Algorithm 3 Construct and select reliable Feature tracks
Input: Filtered feature matches M ′

ij , the cover times for each images N .
Output: Set of selected feature tracks P .
1: Construct feature tracks F = {F1, · · · , FM} with M ′

ij , where each
feature track is a set of feature rays Fk = {fk1, · · · , fki, · · · };

2: Sort all feature tracks based on their maximum parallax angles in de-
scending order to obtain Forder = {F1, · · · , FM}

3: Initialize a set for each image I = {I1, · · · , Ii, · · · }, where Ii =
0, ∀i ∈ V , Ii is the times that image i is covered;

4: for Fk in Forder do
5: if IsEmpty(I) then
6: break
7: end if
8: if Fk can cover some images in I then
9: Insert Fk into P

10: for fki in Fk do
11: Ii ← Ii + 1
12: if Ii >= N then
13: Delete Ii from set I
14: end if
15: end for
16: end if
17: end for

With the selected feature tracks P and filtered re-
estimated relative translations, we construct a view track
graph. Since the camera-to-camera and camera-to-point
constraints are equivalent in a mathematical expression, for
simplicity, we denote both the normalized relative trans-
lations and feature rays as sij ,∀ij ∈ Ev

⋃
Ep and de-

note the positions of estimated cameras and 3D points as
si,∀i ∈ V

⋃
P . The algorithm for unbiased optimization

is presented as below:

Algorithm 4 IRLS-BCD solver for unbiased optimization
Input: Initial camera and 3D points si, ∀i ∈ V

⋃
P , normalized image

observations sij , ∀ij ∈ Ev
⋃

Ep

Output: Camera and 3D points si, ∀i ∈ V
⋃

P .
1: Initialize Wij , ∀ij ∈ Ev

⋃
Ep; Set n = 0;

2: while n < IRLSIter AND not converged do
3: m = 0;
4: while m < BCDIter do
5: ŝij ←

si−sj
||si−sj ||2

;
6: if sij · ŝij ≥ 0 then
7: H(ŝij)← ||sij×ŝij ||2
8: else
9: H(ŝij)← ||sij ||2

10: end if
11: Update si : Solve the reweighted least squares objective func-

tion in Eq. (11) by Cholesky decomposition;
12: m = m+ 1;
13: end while
14: Wij ← ϕ(H(ŝij));
15: n = n+ 1;
16: end while

HETA without BA Colmap

Figure 10. Comparison of results between the HETA method with-
out BA and the ground truth from Colmap.

For the most cases when sij · ŝij ≥ 0, we penalize
the sine value of the error angles between known normal-
ized vector sij and temporary estimated direction vector
H(ŝij) through the L2 norm of sij×ŝij . However, when
sij · ŝij < 0, we utilize the L2 norm of normalized vector
sij , which equals 1 for a larger penalization. For the IRLS-
BCD method, we set IRLSIter=30 & BCDIter=5 as used
in [59] and utilize a Cauchy loss with scale β = sin 3◦.
With a relatively accurate initial solution from L1 norm op-
timization, this unbiased optimization can be approximately
considered as minimizing the error angles of image obser-
vations. Especially for the feature rays, when the camera
global rotations are relatively accurate, this unbiased op-
timization can achieve an effect similar to minimizing the
reprojection error in bundle adjustment.

II.2. Output of HETA

After robust L1 norm optimization and unbiased L2

norm optimization in HETA method, both the positions of
cameras and sparse 3D points for selected feature tracks
are estimated. We take the Notre Dame data in the 1DSfM
dataset as an example. As shown in Fig. 10, the estimated
sparse point cloud represents the general structure of the
scene, which shows the effectiveness of our method for es-
timating cameras and 3D points simultaneously.

II.3. Exploring the Use of Hybrid Constraints

There are three primary advantages to employing hybrid
constraints. First, compared to the raw view graph with
solely camera-to-camera constraints, the addition of con-
straints from 3D points ensures that nearly all cameras in
the view track graph are part of a parallax rigid graph. This
leads to the registration of more cameras with hybrid con-
straints. Second, while feature rays, serving as raw informa-
tion in images, exhibit higher precision than estimated rel-
ative translations, they also have a higher outlier ratio than
relative translations. In contrast, relative translations pro-
vide more direct and stringent constraints than feature rays.
Therefore, a balance between accuracy and robustness is
achieved by using all relative translations and selecting re-
liable feature tracks. Third, when the parallax angles of the



      

                                  

 

   

   

   

   

 

 
 
 

                     

      

                                  

 

   

   

   

   

 

 
 
 

                     

              

Figure 11. Cumulative distribution functions of relative transla-
tion scale errors among the HETA method, CReTA method, and
PGILP method on a subset of the KITTI dataset. The HETA
method utilizes hybrid constraints, the CReTA method employs
pure camera-to-camera constraints, and the PGILP method relies
on pure camera-to-point constraints.

feature rays are low, the 3D points become unstable. This
can be addressed by selecting feature tracks with larger par-
allax angles. Similarly, when the camera motion trajectories
are approximately collinear, the camera positions become
unstable. This can be mitigated by incorporating constraints
from 3D points rather than filtering relative translations.

We compare the scale error cumulative distribution func-
tion of relative translations estimated by three methods us-
ing different constraints, as shown in Fig. 11. We find that
the accuracy of scales estimated by the HETA method using
hybrid constraints is higher than the other two methods with
pure constraints, supporting our conclusion.

II.4. Exploring the Use of Explicit Method

The representation of implicit 3D points for each feature
track relies on two base cameras with the largest parallax
angle, making it sensitive to the precision of the global ro-
tations of these base cameras. On one hand, as two base
cameras have the largest parallax angle, their relative rota-
tion generally exhibits a larger error than two cameras with
a smaller parallax angle. On the other hand, if the corre-
spondence feature match of base cameras is an outlier, the
represented 3D point also becomes an outlier, leading to the
failure of constraints for the entire feature track.

In contrast, explicit 3D points for each feature track are
estimated using all feature rays, which generally exhibit
higher accuracy. Moreover, an unbiased angle-based ob-
jective function can be formulated with explicit 3D points.
In summary, the HETA method with hybrid explicit con-
straints generally outperforms other methods.

II.5. The Necessity of Cross-product-form

When the angular errors of the relative translation di-
rection are below 90◦, the cross-product-form objective
function exhibits better convergence than the scale-form
by avoiding redundant variables. This advantage becomes
more pronounced on large-scale datasets when incorporat-
ing camera-to-point constraints. As shown in Tab. 3, the

Raw
view graph 1DSfM Filter Re-estimation

Re-estimation +
1DSfM Filter

data No Ro(%) No Ro(%) No Ro(%) No Ro(%)
00 1878 0.6 1071 0.4 610 0.2 373 0.1
01 1734 1.7 174 0.2 73 0.1 31 0.1
02 722 0.3 499 0.2 481 0.2 479 0.2
03 29 0.1 10 0.1 11 0.1 0 0
04 44 0.3 16 0.1 0 0 0 0
05 1244 0.7 501 0.3 12 0.1 9 0.1
06 1329 1.8 158 0.3 39 0.1 5 0.1
07 1868 2.3 620 0.1 66 0.1 7 0.1
08 446 0.2 110 0.1 6 0.1 3 0.1
09 310 0.4 249 0.3 199 0.3 195 0.3
10 23 0.1 5 0.1 1 0.1 1 0.1

ALM 387 1.4 244 0.9 173 0.7 104 0.5
ELS 433 4.3 175 1.9 81 1.1 39 0.7

GDM 376 2.9 289 2.4 186 1.6 137 1.5
MDR 137 6.3 122 5.7 67 3.4 49 2.7
MND 475 2.0 251 1.1 153 0.7 114 0.6
ND 461 1.3 301 0.9 182 0.5 134 0.4

NYC 218 2.7 167 2.1 80 1.1 53 1.0
PDP 374 2.9 278 2.3 145 1.2 104 1.1
PIC 3434 4.6 1820 2.8 994 1.5 463 1.3
ROF 1408 5.9 709 3.6 575 2.8 262 2.2
TFG 8738 5.0 4451 3.0 2872 1.9 1364 1.7
TOL 248 2.3 153 1.6 104 1.3 54 0.9
USQ 1967 14.0 912 8.0 419 4.7 204 3.2
VNC 931 2.7 525 1.7 384 1.2 200 0.8
YKM 366 4.0 248 3.0 150 1.9 82 1.5

Table 4. Changes in the relative translation outliers with angular
errors above 90◦ in the view graph after using re-estimation and
the 1DSfM filtering method. No and Ro respectively denote the
number and the ratio of outliers.
Cross-HE method outperforms the Scale-HE method sig-
nificantly as the number of images in the dataset increases.
Although there are other types of non-linear distance metric
methods mentioned in [54], the cross-product-form is uti-
lized in HETA for better convergence.

II.6. The Availability of Cross-product-form

Even when the angular errors of the relative transla-
tion direction exceed 90◦, the inequality constraints for the
cross-product-form objective function can offer an incorrect
feasible region. However, the ratio of these large angular
errors is very low. Changes in the number and the ratio of
these large outliers in the view graph after re-estimation and
the 1DSfM filter are shown in Tab. 4. We observe a signif-
icant decrease in the number of these large relative trans-
lation outliers after relative translation re-estimation. Fol-
lowing the 1DSfM filter, the number of outliers decreases
further. Particularly for the KITTI dataset, the outlier ra-
tios are below 0.3%. Through experimental results, these
outliers do not hinder HETA as the top-performing method.
Therefore, the cross-product-form remains applicable.

II.7. ADMM Method for L1 norm Optimization

To obtain a fast convergence, ADMM with iterative soft-
thresholding algorithm (ISTA) [6] is utilized to estimate
cameras and 3D points under L1 norm. Eq. (10) is equiva-



lent to a least absolute deviations problem:

min
x
|Ax|1, s.t. Bx ≥ b, (16)

where x denotes the vector comprising all cameras and
points to be optimized, A denotes the matrix formed by rel-
ative translations and feature rays in a cross-product metric,
B denotes the matrix formed by the relative translations in
a dot-product metric, b denotes the vector with all elements
equal to 1. Eq. (16) can be written in ADMM form as:

min
x,z1,z2

|z1|1, s.t. z1 = Ax, z2 = Bx− b ≥ 0. (17)

Let M denote [AT ,BT ]T , let n denote [0, bT ]T , and let z
denote [zT1 , z

T
2 ]

T for convenience. With the parameter ρ,
the augmented Lagrangian function is formulated below:

Lρ(x, z, u) = |z1|1+(ρ/2)||Mx−n−z+u||22−(ρ/2)||u||22
(18)

The ADMM update of Eq. (18) can be expressed as:

xk+1 ← (MTM)−1MT (n+ zk − uk)

zk+1
1 ← S1/ρ(Axk+1 + uk)

zk+1
2 ← max{Bxk+1 − b+ uk, 0}

uk+1 ← uk +Mxk+1 − zk+1 − n,

(19)

where the soft thresholding operator S1/ρ(·) is defined as:

S1/ρ(a) = (a− 1/ρ)+ − (−a− 1/ρ)+ (20)

II.8. Inequality Constraint v.s. Equality Constraint

Similar to [59], we conduct two experiments in a four-
camera 2D case, and all their pairwise relative directions
are observed with a random −3◦ ∼ 3◦ noise. For each
experiment, we compare three methods, including Revised-
LUD with equality constraints [59], HETA-L1 with equal-
ity constraints, and HETA-L1 with inequality constraints.
As shown in above Fig. 12 (a), despite the long baselines
of camera C4, its position estimations by all three methods
are similar and do not exhibit significant gravitation towards
cameras 1-3. Fig. 12 (b) further corroborates that there is
no shrinkage effect on long baselines for all three methods.
Moreover, for HETA, the optimization matrix of inequality
constraints is more sparse than that of equality constraints.

III. Additional Results
III.1. Compared to BATA and Colmap

We compare HETA with global method BATA and in-
cremental Colmap on three large-scale 1DSfM datasets and
three large-scale KITTI datasets, as shown in Tab. 5. From
these comparisons, it is clear that HETA outperforms both
COLMAP and BATA on the KITTI datasets and demon-
strates greater robustness and accuracy than BATA on the
1DSfM datasets. Additionally, both global methods exhibit
greater efficiency compared to the incremental COLMAP.

(a)

(b)

Figure 12. A toy example to show no shrinkage effect. (a) True
and estimated camera locations of two random experiments (for
better shape comparison, the four sets of estimated camera posi-
tions are aligned at C2(−1, 0) and normalized to have the same
scale of edge C1−C3. (b) ||ti − tj ||2 and ln||ti − tj− dijvij ||2
of two experiments plotted against edge i− j between Ci and Cj.

Data
Name

BATA[59] HETA COLMAP[44]
ẽ ē Nc T ẽ ē Nc T ẽ ē Nc T

KITTI-00 13.3 27.9 9082 23 2.4 7.3 9082 51 2.9 4.6 9082 9498
KITTI-02 25.7 28.5 9322 24 4.6 6.5 9322 51 13.3 29.9 9322 2415
KITTI-08 22.4 32.6 8142 21 5.6 6.9 8142 40 8.2 21.9 8142 4032

1DSfM-PIC 0.1 0.5 1775 4 0.1 0.4 1807 11 - - 1838 422
1DSfM-ROF 0.1 0.1 893 5 0.1 0.1 907 12 - - 918 184
1DSfM-TFG 1.0 2.5 3859 12 0.7 2.4 3951 25 - - 3989 1242

Table 5. The notation ẽ and ē respectively denotes the median and
mean distance error, Nc is the number of registered images, and T
shows the running times in minutes.

III.2. Running Time Comparison

We compared the running time on an Ubuntu 20.04.5
LTS platform, with 62 GB memory and 12th Gen Intel(R)
Core(TM) i7-12700 CPU @ 2.10 GHz, 20 cores. The com-
parison of the running time for the L1 norm optimization of
various objective functions is shown in Tab. 7. While the
efficiency of hybrid methods is slightly lower than methods
using pure relative translations, their efficiency is signifi-
cantly faster than methods using pure feature tracks. The
comparison of different existing methods for the whole op-
timization is shown in Tab. 8.

III.3. Ablation Experiments of 1DSfM Dataset

The detailed results by method with various objec-
tive functions for the 1DSfM dataset are presented in
Tab. 6. After unbiased optimization, we observe that the
results from Scale-HE-L2 and Cross-HE-L2 are compara-
ble. Since Cross-HE method outperforms Scale-HE method
obviously, the cross-product-form objective function has
wider applicability for both unordered dataset and Sequence
dataset. Moreover, hybrid methods clearly outperform
other pure methods. Reconstruction results for the 1DSfM
dataset estimated by the HETA method are displayed in
Fig. 13. Results estimated by other state-of-the-art meth-
ods are shown in Fig. 14.



1DSfM Scale-PT Cross-PT Scale-PFI Scale-HE-L1 Scale-HE-L2 Cross-HI Cross-HE-L1 Cross-HE-L2

Name ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē
ALM 0.5 1.3 0.5 1.7 0.5 1.6 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2
ELS 2.4 4.2 2.5 4.3 2.6 4.7 2.2 3.7 2.1 3.7 2.6 4.2 2.4 3.9 2.1 3.8

GDM 3.7 9.5 5.0 10.1 4.5 12.1 2.4 13.1 2.3 13.0 2.8 9.6 2.8 10.4 2.2 10.1
MDR 1.7 9.8 2.0 10.4 1.9 12.9 1.4 9.1 1.4 9.1 1.4 9.7 1.4 9.7 1.4 9.6
MND 0.5 1.1 0.6 1.1 0.6 1.2 0.5 1.0 0.5 1.0 0.6 1.1 0.5 1.0 0.5 1.0
ND 0.3 1.4 0.4 2.1 0.6 1.8 0.3 0.9 0.3 0.9 0.3 1.5 0.3 1.4 0.3 0.9

NYC 0.6 1.9 1.0 2.6 0.9 2.4 0.5 1.6 0.5 1.5 1.0 2.1 1.0 2.2 0.5 1.5
PDP 1.2 3.4 1.3 3.7 1.1 3.3 1.1 2.9 1.1 2.9 1.2 3.0 1.1 2.9 1.1 2.9
PIC 0.8 1.7 1.0 1.9 1.0 2.3 0.8 1.8 0.7 1.8 0.9 1.8 0.9 1.9 0.7 1.7
ROF 2.5 4.8 3.4 7.0 3.2 7.0 1.6 4.0 1.2 3.5 1.7 3.7 2.0 4.1 1.2 3.3
TFG 3.8 6.3 3.5 5.9 4.2 8.7 2.9 6.2 2.6 5.9 3.1 5.9 3.3 6.4 2.6 5.8
TOL 2.9 8.4 4.2 12.3 3.1 8.8 2.3 5.4 2.2 4.9 2.5 5.5 2.5 4.9 2.1 4.5
USQ 4.3 8.3 4.5 9.0 5.6 9.7 3.7 7.2 3.4 7.0 4.3 8.6 4.2 7.6 3.6 7.2
VNC 2.6 8.9 2.1 6.7 3.4 13.8 1.8 4.5 1.8 4.4 1.8 4.9 1.8 4.1 1.7 4.0
YKM 1.4 2.3 1.5 2.4 1.4 3.0 1.2 2.4 1.1 2.2 1.1 2.4 1.1 2.4 1.1 2.1

Table 6. Camera position errors produced by applying various objective functions on the 1DSfM dataset. The best results are shown in
bold and the second-best results are underlined.

Data 00 01 02 03 04 05 06 07 08 09 10 ALM ELS GDM MDR MND ND NYC PDP PIC ROF TFG TOL USQ VNC YKM
Scale-PT 2.95 1.31 2.67 0.84 0.59 2.01 0.97 1.02 2.34 0.99 0.96 0.79 0.28 0.65 0.03 0.76 0.95 0.26 0.48 1.20 0.74 2.19 0.42 0.42 0.90 0.35
Cross-PT 2.68 0.80 2.46 0.86 0.60 1.89 0.91 0.97 2.16 0.94 0.93 0.77 0.23 0.56 0.10 0.73 0.91 0.24 0.44 1.20 0.71 2.02 0.34 0.52 0.93 0.35
Scale-PFI 83.42 32.36 95.47 30.25 6.07 56.50 18.85 26.02 99.81 33.03 29.19 14.63 6.26 10.97 3.20 11.25 17.15 8.46 4.97 24.21 23.72 44.29 14.58 8.54 22.57 11.68
Scale-HE 30.4 5.85 29.56 5.90 1.85 18.96 7.18 8.36 24.67 9.22 8.12 2.42 0.99 1.94 0.82 1.75 2.71 1.33 1.19 5.75 2.30 12.99 1.65 1.73 3.12 1.52
Cross-HI 22.59 4.67 22.12 4.54 1.66 14.04 5.49 6.40 18.87 6.94 6.23 2.16 1.03 1.73 0.75 1.60 2.29 1.27 1.12 4.16 2.50 8.80 1.60 1.56 2.47 1.37
Cross-HE 23.19 4.54 22.45 4.26 1.61 13.18 5.43 5.84 17.96 6.81 5.92 1.87 0.94 1.61 0.72 1.51 2.17 1.19 1.07 4.32 2.39 9.49 1.49 1.50 2.33 1.30

Table 7. Runtime comparison of L1 norm optimization using various objective functions on KITTI and 1DSfM datasets in minutes.

Data 00 01 02 03 04 05 06 07 08 09 10 ALM ELS GDM MDR MND ND NYC PDP PIC ROF TFG TOL USQ VNC YKM
LUD 9.52 2.60 10.00 2.66 0.86 6.63 2.42 2.92 9.73 3.65 41.73 5.22 0.69 1.82 0.25 2.40 3.59 0.97 1.32 2.21 6.78 4.39 1.27 1.46 4.62 0.92

CReTA 17.68 4.19 18.04 3.69 1.25 10.56 20.18 4.03 16.82 4.79 4.16 5.67 1.24 2.44 0.85 2.94 4.77 1.75 1.50 3.66 7.97 11.01 2.07 1.85 5.68 1.61
LiGT 16.41 1.97 9.47 2.11 0.34 13.13 2.28 1.98 6.79 3.15 1.74 0.60 0.39 0.29 0.11 1.39 1.59 0.13 0.11 4.49 1.30 14.67 0.15 1.15 0.80 1.40

PGILP 89.76 32.36 102.42 31.67 6.29 60.93 20.18 27.64 106.48 35.44 31.09 16.74 6.09 11.12 3.12 11.86 17.76 8.40 5.20 25.13 26.40 42.74 14.16 8.85 26.01 11.20
1DSfM 32.14 2.31 31.59 4.42 0.52 14.33 4.88 6.16 22.52 7.83 4.86 1.22 0.54 0.65 0.10 1.44 1.80 0.63 0.83 4.62 2.17 3.87 0.87 1.51 2.25 0.70
HETA 51.05 11.21 51.19 9.32 2.77 28.93 10.67 12.45 40.03 14.23 12.72 8.21 1.90 5.06 1.17 4.56 7.26 2.93 2.33 11.15 12.74 23.996 4.02 3.91 9.82 3.33

Table 8. Runtime comparison of different methods on KITTI and 1DSfM datasets in minutes.

USQ VNC YKMTFG TOL

ROFNYC PDP PICND

MDR MNDALM ELS GDM

Figure 13. Reconstruction results for the 1DSfM dataset estimated by HETA method.
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Figure 14. Reconstruction results for the 1DSfM dataset estimated by several state-of-the-art methods.
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