
Supplementary material for ”Locally Adaptive Neural 3D Morphable Models”

Michail Tarasiou Rolandos Alexandros Potamias Eimear O’Sullivan
Stylianos Ploumpis Stefanos Zafeiriou

Imperial College London
{michail.tarasiou10,r.potamias19,e.o-sullivan,s.ploumpis,s.zafeiriou}@imperial.ac.uk

1. Quads-based data
To effectively learn a model capable of disentangled hu-
man head identity manipulations, a large scale dataset of 3D
heads with a neutral expression is required. For this reason,
6k high quality head meshes from the original UHM dataset
[4] were registered with a new mesh template consisting
of 12k vertices, illustrated in Fig.1. While many previ-
ous models have employed triangle-based template meshes,
here we opt for a quad-based mesh template. Quad meshes
are often preferred for rigging and animation purposes as
they are generally easier to rig and deform more predictably
and smoothly than their triangle-based counterparts. Quads
can also be easily subdivided into smaller quads, producing
smoother results than triangle based meshes, where artifacts
can occur upon subdivision. Given the applicability of this
work for the creation and manipulation of 3D assets, a quad-
based template is an intuitive choice.

2. Aditional experiments
2.1. Ablation on LAMM hyperparameters

In Table 1 we present an ablation study on the design of
the most important parameters of our architecture. Here,
we only consider the Transformer backbone. We further
discuss how these choices affect the performance of archi-
tectures based on the MLPMixer when differences between
the two are significant. As discussed in section 4 of the
main manuscript, our architecture consists of five encoder
and three decoder layers with 512 feature dimension. For
the UHM12k data we provide 11 distinct regions to split
our input data.

During our search over a suitable feature dimension we
have observed almost flat performance for values > 512,
while there some drop is observed for smaller feature di-
mensions. Our architecture’s complexity is linear to the fea-
ture size, so we select the smallest value that does not lead
to significant performance degradation, which is 512. The
MLPMixer had a similar response to this parameter and the
same value was used there as well.

The features multiplier refers to the ratio of the inner

Figure 1. Quad-based template for UHM12k data.

feature dimension for the Transformer feedforward layer
(within a Transformer layer, after self-attention) to the ar-
chitecture’s feature dimension. Multipliers < 1 indicate
a bottleneck design for the feedforward layer while values
> 1 suggest an inverted bottleneck design. Our Transformer
backbone appears to benefit significantly from a large in-
verted bottleneck design with a ×4 multiplier. MLPMixers
behave fundamentally different with regards to this hyper-
parameter as performance is very similar among all exam-

1

Ablation Settings Mean Error

Feature size 256 14.53
512 9.08

1024 9.04

Features
Multiplier

0.5 14.02
1 11.97
2 10.45
4 9.08

Depth

Encoder Decoder
3 3 10.50
4 4 9.10
5 3 9.08
3 5 9.34
5 5 8.48

Number of
Regions

29 8.96
17 9.05
13 9.07
11 9.08

Loss
|V̂ − V| 12.14
Lenc 10.52
Ldec 10.13

Lenc + Ldec 9.08
×10 learn rate 49.39

Table 1. Ablation on hyperparameters for LAMM Trans-
former architecture. We present mean per-vertex Euclidean dis-
tance error (mm ×10−2) in UHM12k evaluation set. Bold letters
indicate the value for each hyperparameter that was used in the
final design. Each ablation shows performance differences when
modifying the values of respective hyperparameter.

ined values. We choose a value of ×0.5 for the MLPMixer.
In addition to the key and query parameters which are not
used in the MLPMixer, using a small multiplier value here
accounts for the significant reduced number of parameters
in the MLPMixer compared to Transformer backbones as
shown in Table 3.

An ablation over network depth suggests an increase
in performance with depth. Using fewer than eight layers
combined for the encoder and decoder, was found subopti-
mal. More layers lead to increased performances, but these
were not used because of the additional computation cost.
There was not significant difference in how the number of
layers was split among the encoder and decoder modules.
For this reason we opted for an assymetric design, reducing
the size of our decoder as it is this module that will be sub-
sequently used after training. Thus, our model includes five
encoder and three decoder layers.

Our initial design for the head regions involved 29 dis-
tinct areas selected by a 3D artist. We further proceeded
with merging neighbouring regions to obtain splits in 17,
13 and 11 regions, all of which are illustrated in Fig.2. Ab-

lating over these, we observe that the number of regions
does not affect our model’s performance in dimensionality
reduction. Similar results were obtained for the MLPMixer.
Since the Transformer complexity in quadratic to that num-
ber (linear for MLPMixer) we used 11 regions in our design.

Finally, we do an ablation on the loss used during train-
ing. We observe that using a single loss at the level of out-
puts (||V̂ − V||1) leads to some performance degradation.
Replacing this with the multilayer component for the en-
coder Lenc leads to some improvements, however, the ef-
fect of Ldec is more significant. Using both components
Lenc + Ldec leads to best performance overall and is cho-
sen thereafter. For an eight layer architecture (five encoder
and three decoder layers) our multilayer loss consists of ten
different components (encoder tokens + ×5 encoder layers
+ learned decoder tokens + ×3 decoder layers) all of which
are used with λ = 1. To assess whether performance gains
can simply be attributed to an increased combined learning
rate, we train with only one loss component at the level of
outputs but now use ×10 our learning rate to 10−3. We
observe that training with this value leads to significant per-
formance degradation suggesting that the benefits of multi-
layer loss can not be simply be attributed to increased learn-
ing rate from adding the supervision signals from the ×10
loss components.

2.2. Additional results for 3D reconstruction

In addition to the 3D reconstruction results reported in Table
1 (main manuscript), here, in Table 2, we present additional
results for all the datasets with a varying number of latent
feature dimension. We can make the following observa-
tions. First, LAMM-MLPMixer is always found to outper-
form baselines significantly among all datasets and feature
dimensions tested. LAMM-Transformer is best in UHM12k
data and clearly best at UHM12k with expressions. How-
ever, it losses in UHM and is very close in Handy, when
compared to SpiralNet++. PCA outperforms all GCN base-
lines, but not LAMM, at latent dimension 256. This is not
the case for smaller values in UHM12k and Handy data,
where Graph Neural Networks (GCNs) clearly outperform
PCA. This observation is similar to results shown in previ-
ous studies [1, 5].

Finally, we show additional results using region-PCA. To
obtain these results we split the latent space of PCA into
evenly sized segments, using the same number of regions
as our models, and used each segment of the latent code to
control respective regions. It is observed that region-PCA is
clearly outperformed by all other methods, with differences
being more pronounced for small latent sizes. We believe
there is a straightforward explanation for this effect. This is-
sue arises from the fundamental principle that both human
head and hands, as anatomical entities, exhibit global geo-
metric patterns that are not confined to isolated regions but

Table 2. Quantitative evaluation of 3D shape reconstruction for models trained exclusively in dimensionality reduction (autoencoding).
Presented values are per vertex mean Euclidean distances (×10−2mm). For region-PCA we split the latent space is evenly split into
segments, controlling the same regions used in our models.

UHM12k UHM12k+expr. UHM Handy
32 64 128 256 128 256 128 256 32 64 128 256

PCA 54.32 31.78 16.39 10.42 24.12 11.49 20.84 11.73 87.27 60.89 40.97 25.90
region-PCA 191.48 99.12 49.10 23.36 50.91 25.31 50.34 25.92 189.11 108.11 68.16 42.61
COMA [5] 56.5 35.30 16.23 13.11 26.80 14.20 20.70 15.40 89.50 60.07 41.60 26.20

SpiralNet [1] 52.57 29.55 15.69 11.82 18.92 14.77 22.34 13.88 85.66 58.20 40.32 26.75
SpilarNet++ [3] 52.00 29.62 15.60 11.53 16.74 14.28 21.60 13.55 84.45 57.75 39.83 26.72

LAMM-Transformer 42.88 19.55 10.71 9.08 10.65 9.09 21.72 13.70 84.34 57.22 40.50 26.31
LAMM-MLPMixer 46.59 23.46 10.88 7.97 12.32 9.51 19.93 11.48 82.63 56.89 39.20 24.60

Figure 2. Head regions used in ablation experiments with UHM12k.

rather span across them, creating a cohesive and interdepen-
dent structure. For instance, the curvature of the cheek not
only describes the cheek itself but also implies certain char-
acteristics about the jawline, the nose structure, the forehead
and is indicative of the head’s overall size. When PCA is
applied separately to each region, these global patterns are
effectively segmented, and the holistic nature of the object’s
geometry is lost. As a result, certain key patterns that ex-
tend beyond the boundaries of individual regions have to be
redundantly encoded in each of the split latent codes. This
redundancy leads to an inefficient use of the latent space, as
a portion of each region’s code is occupied with replicating
aspects of the global pattern that are shared across multiple
regions. This explains why the performance degradation of
region-PCA compared to global PCA is more pronounced
for smaller latent sizes, as fewer latent dimensions remain
available to describe unique regional patterns after a por-
tion of each is allocated to replicating global patterns. We
believe the same effect is observed in the case of small AE
performance of the SD-VAE [2] explored in section 4 of the
paper.

2.3. Mesh manipulation with non-bottleneck archi-
tecture

In LAMM, the decoder incorporates information from the
source identity via bottleneck latent features z. This bot-
tleneck approach is pivotal in generating novel global in-
stances of 3D objects. By fitting a probability distribution
to these latent features, we can effectively draw new sam-
ples. However, for mesh manipulation, the use of a bottle-
neck design, which inherently restricts the information flow
to the decoder, is not evident.

To investigate the impact of the bottleneck on manipula-
tion efficacy, we conducted an experiment using a LAMM-
Transformer model. In this setup, we bypassed the ini-
tialisation of decoder region tokens y0

i and instead uti-
lized the final encoder features xL

i , thereby enhancing
the information relay to the decoder. While we noted
some performance improvements, they were not as substan-
tial as anticipated. Specifically, in the UHM12k training
for manipulation, our LAMM−Transformer recorded error
rates of 18.47 and 26.03 (×10−2mm) for control and non-
control vertices respectively, as detailed in Table 2 of the
main manuscript. The non-bottleneck architecture yielded
slightly better results, 16.55 and 23.38, respectively. Al-
though this suggests a marginally superior model, the dif-

Figure 3. Region disentanglement is an intrinsic property of LAMM. Models used here are trained only as AEs (no manipulation
training) with L1 supervision. (left) ground truth, (right) predictions with corrupted region tokens using Transformer and MLPMixer
backbones. We corrupt the values of individual, learned region tokens y0′

i = y0
i +n through some random noise n. Learned region tokens

are parameters of our model, thus, we expect output geometry to degrade. We observe that output geometry does indeed degrade, but only
within the confines of region Ri. This effect is more pronounced for the Transformer-based LAMM, where regions other than i remain
practically unaffected.

ference is not pronounced. Furthermore, our bottleneck
design offers a versatile architecture that integrates mesh
compression and manipulation. This unified framework al-
lows for both global sampling of 3D objects and local 3D
parts, alongside manual manipulations. In contrast, the
non-bottleneck architecture invariably necessitates an input
mesh. However, the exploration of a non-bottleneck archi-
tecture presents an intriguing avenue for future research.
The slight improvements in error rates observed here indi-
cate potential for enhanced performance in mesh manipula-
tion.

3. Disentanglement
3.1. Intrinsically disentangled representations

In sections 3 and 4 we discussed how LAMM can achieve
disentangled editing without the need for loss components
that enforce this behaviour and alluded to this being an in-
trinsic property of our architecture. Here we provide some
additional evidence supporting this claim. As a reminder,
we build our decoder inputs by appending K additional
learned region tokens y0

i ∈ RD to the projected latent code
y0
0. For AE only training with Vs = Vt ⇒ δVCi = 0

we can omit the use of fδi as their output will be zero and
will have no effect on generated geometry. Under this per-
spective, the learned tokens y0

i can be viewed as defining a
template which is progressively transformed to Vs.

Here we assess region disentanglement prior to any ma-
nipulation training by examining the spatial effect of region
tokens over generated geometry. In order to do so we cor-
rupt their values and observe the effect on generated out-
put. More specifically, we corrupt the values of individual,

learned region tokens y0′

i = y0
i + n, i > 0 through some

random Gaussian noise n (uniform noise leads to similar
results). Learned tokens are parameters of our model, thus,
by corrupting their values it is not expected that the model
will continue generating reasonable outputs. Generated out-
puts with corrupted tokens are illustrated in Fig.3. We ob-
serve that corrupting individual tokens typically degrades
the shape of the respective regions but, importantly, has lit-
tle to no spillover effect in remaining regions. For the MLP-
Mixer this is not entirely the case as there can be disconti-
nuities among regions and obvious effects for neighbour-
ing regions, however, most regions remain unaffected and
the person’s identity can still be discerned despite corrup-
tions. For the Transformer-based model, corrupted geome-
try stays strictly within the confines of the region whose cor-
responding token was corrupted and no effect is observed in
remaining regions. Note that in Fig.3 we use LAMM check-
points pretrained only in autoencoding with a single L1 loss
||V̂t−Vt||1 at the level of outputs. In this manner we ensure
that observed effects are not attributed to either the use of
our multilayer loss or self-supervised manipulation training.

3.2. Additional results on disentanglement

In Fig. 4, we demonstrate the application of random sam-
pling to the fingers of a hand mesh. Our model successfully
generates disentangled samples that adhere to the statistical
characteristics typical of human hands. We note that alter-
ations in properties such as finger thickness or length pre-
dominantly influence the targeted region alone. Conversely,
changes to attributes like the tip shape often impact adjacent
fingers. This phenomenon is attributed to the inherent sta-
tistical correlations existing among an individual’s fingers,

Figure 4. Random generation of finger regions for a sample in the Handy evaluation set. The model leads to disentangled sampling as
manipulations tend to mostly affetc selected regions.

Table 3. Model complexity and runtimes for low (12k) and high (72k) resolution meshes. Runtimes are measured in commodity hardware,
a i7-7820X CPU @ 3.60GHz intel CPU and a Nvidia GTX 1080ti GPU using single batch (average among 100 runs).

Model
12k Vertices 72k Vertices

latency (s) #params. (M) latency (s) #params. (M)

cpu gpu decoder token−1 cpu gpu decoder token−1

COMA 0.5 0.015 3.88 - 3.80 0.089 19.38 -
SpiralNet++ 0.075 0.003 4.27 - 0.58 0.016 19.67 -

Transformer (ours) 0.015 0.006 9.45 19.5 0.047 0.011 9.45 110
MLPMixer (ours) 0.015 0.006 0.8 19.5 0.045 0.011 0.8 110

highlighting the interplay between local and global modifi-
cations within the model’s framework.

4. Model size and complexity

In Table 3 we provide an in-depth analysis of the model size
and runtimes for LAMM and various GCN decoders used
in our experiments. A notable distinction emerges between
LAMM and the GCN baselines. Despite having a higher pa-
rameter count, LAMMs demonstrate superior performance
in terms of inference speed, particularly on a CPU. This can
be attributed to differences in the dimensions of the feature
space of LAMM in comparison to GCNs.

Delving into the specifics, Table 3 highlights that the
majority of LAMM model parameters reside in the in-
verse tokenization weights Wout, amounting to 19.5 mil-
lion for the 12k vertices dataset and 110 million for the
72k vertices dataset. As detailed in section 3, these pa-
rameters are utilized only once in computation, thus min-
imizing their computational load. The remaining parame-
ters are distributed between the Transformer (9.45M) and

the MLPMixer (0.8M) backbones. This disparity in pa-
rameter counts can be explained by two key factors: firstly,
the MLPMixer replaces the transformer’s keys and queries
weights of size D×D (where D=512 represents the feature
dimension) with smaller K×K weights (K=11 denotes the
number of regions); secondly, the MLPMixer operates ef-
fectively with a reduced size multiplier m = 0.5 for the in-
ner dimension of feedforward layers (size 256), in contrast
to the Transformer’s need for a larger multiplier m = 4 (size
2048). These parameters, while shared among features, are
applied to a limited set of features. As discussed in sections
3 and 4 of the main manuscript, LAMM can model 3D head
data using as few as 11 regions. This is the key to under-
standing LAMMs low computational requirements. Even
in the case of the 72k vetrex meshes our internal represen-
tation length is just 12 (11 region features plus 1 latent code
feature) in all layers. In comparison, the decoders of GCNs
typically consist of four layers, each upscaling features by
a factor of 4. Applied on 12k and 72k mesh inputs, this up-
scaling leads to feature lengths [47, 187, 745, 2979, 11916]
and [281, 1124, 4496, 17982, 71926], respectively for each

layer. This increased number of features in all layers of
GCNs is critical to their low inference speeds in CPUs. For
12k resolution meshes SpiralNet++ can run faster on our
GPU than LAMM, however this changes with increasing
resolution. For 72k vertex meshes LAMM is faster on a
GPU and significantly faster on a CPU.

References
[1] Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis,

Michael Bronstein, and Stefanos Zafeiriou. Neural 3d mor-
phable models: Spiral convolutional networks for 3d shape
representation learning and generation. In The IEEE Interna-
tional Conference on Computer Vision (ICCV), 2019. 2, 3

[2] Simone Foti, Bongjin Koo, Danail Stoyanov, and Matthew J.
Clarkson. 3d shape variational autoencoder latent disentangle-
ment via mini-batch feature swapping for bodies and faces. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 18730–18739,
2022. 3

[3] Shunwang Gong, Lei Chen, Michael Bronstein, and Stefanos
Zafeiriou. Spiralnet++: A fast and highly efficient mesh con-
volution operator. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 0–0, 2019.
3

[4] Stylianos Ploumpis, Evangelos Ververas, Eimear O’Sullivan,
Stylianos Moschoglou, Haoyang Wang, Nick Pears,
William AP Smith, Baris Gecer, and Stefanos Zafeiriou.
Towards a complete 3d morphable model of the human
head. IEEE transactions on pattern analysis and machine
intelligence, 43(11):4142–4160, 2020. 1

[5] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J. Black. Generating 3D faces using convolutional
mesh autoencoders. In European Conference on Computer
Vision (ECCV), pages 725–741, 2018. 2, 3

	. Quads-based data
	. Aditional experiments
	. Ablation on LAMM hyperparameters
	. Additional results for 3D reconstruction
	. Mesh manipulation with non-bottleneck architecture

	. Disentanglement
	. Intrinsically disentangled representations
	. Additional results on disentanglement

	. Model size and complexity

