
3D Face Tracking from 2D Video through Iterative Dense UV to Image Flow

Supplementary Material

A. Overview

In the following, we describe in detail the architecture of

our 2D alignment network. We also show the datasets used

to train the 2D alignment network, how they are annotated

and how we augment the data. Furthermore, we provide de-

tails of our Multiface benchmark dataset. Through various

visualizations of additional results, we show and compare

the accuracy of our model. Lastly, we explain in detail our

experiments on the downstream tasks head avatar synthesis

and speech-driven 3D face animation.

B. 2D Alignment Network Architecture Details

As mentioned in the paper, our 2D alignment network con-

sists of three parts: an image feature encoder, UV feature

generators and a UV-image flow prediction module. This

setup allows us to build on extensive research the fields of

image feature encoding and optical flow prediction.

B.1. Image feature encoder

To produce accurate and semantically meaningful features,

we use a state-of-the-art semantic segmentation model as

our feature encoder. As mentioned in the paper, we select

the vision-transformer-based Segformer [45], which has

demonstrated top results in semantic segmentation bench-

marks. It is pre-trained on ImageNet [11], which enables

us to transfer large-scale image knowledge for enhanced

feature generation. We show that this network can predict

meaningful information by visualizing the generated latent

feature map in Fig. 6.

(a) Input image (b) Latent feature map

Figure 6. Visualization of the latent feature encoding Zimg (b) of

the corresponding input image (a) using PCA. The first three prin-

cipal components are colored in red, green and blue respectively.

This visualization shows that our image feature encoder learns to

produce some sort of semantic information. It also suggests that

the network attends to visually salient areas such as tip of the ear

(light blue), eyebrows (green), or silhouette (green and purple).
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Figure 7. An overview of our modified RAFT update module. We

include the previous uncertainty prediction in the motion encoder

(on the left) and output the updated uncertainty using an additional

output block (on the right). Context and initial hidden code are

generated by our UV feature generators.

B.2. UV­image flow prediction

For our UV-image flow prediction module, we adapt

RAFT [36]. This model has shown excellent results on op-

tical flow prediction, and demonstrated great capability for

generalization due to its clever network design. The multi-

scale 4D correlation volume allows the network to correlate

and associate features across large pixel offsets. The recur-

rent update block mimics an iterative optimization process,

where a flow estimate is refined with each iteration. In our

2D alignment network, RAFT is modified to not predict the

optical flow between two images, but the per-pixel offset be-

tween the UV space and image space. As mentioned in the

paper, we add the capability to predict the UV-image flow

uncertainty. In Fig. 7, we show the specific modifications

we made to the RAFT module to also output uncertainty.

Offloading the alignment task to this UV-flow prediction

network allows the image feature encoder to focus on both

high and low-level features (see Fig. 6). The flow prediction

module can then use these features to align the UV space

with pixel-level accuracy.

B.3. UV positional encoding module

To generate UV space features, initial hidden code and a

context map for the update module, we use three identical

multi-scale positional encoding modules. The architecture

1



P
ar

am
s

P
ar

am
sP

ar
am

s

P
ar

am
s

Upsample

Upsample

Upsample

Upsample

M
LP

UV Generator

Texture pyramid

Figure 8. The architecture our UV positional encoding modules. A

parameter texture pyramid (left) is upsampled to UV dimensions,

concatenated (center) and then processed by a linear layer (right).

We deploy three of these generators to generate positional embed-

dings that are used as UV features for the RAFT correlation block,

and context and hidden code for the RAFT update block.

of these modules is shown in Fig. 8.

C. Multiface Benchmark Dataset

As mentioned in the paper, we select a subset of 86 se-

quences of the Mulitface [44] dataset. This subset consists

of 10 subjects with 8 or 9 sequences each and a randomly

selected camera view. Each sequence consists of one fa-

cial performance that is approximately 2 to 4 seconds in

length. We select a diverse set of facial performances, in-

cluding extreme ones (scream, cheeks blowing) and more

common ones (speaking, blinking). The camera view is

constrained to face the subject with a maximum horizontal

viewing angle of 60◦and a maximum vertical viewing an-

gle of 35◦. Example sequences for each subject are shown

in Fig. 9. In the Multiface dataset, each frame of every se-

quence is annotated with a topologically uniform ground

truth mesh. We use this mesh to compute the ground truth

optical flow for the screen space motion error, and the cham-

fer distance. We also generate the semantic masks using

this ground truth mesh by selecting corresponding vertices

as shown in Fig. 10.

D. Datasets and Training

As previously mentioned, we use the FaceScape [47], Stir-

ling [1] and FaMoS [3] dataset to train our 2D alignment

module.

The FaceScape dataset contains 20 expressions per-

Figure 9. Extracts from one sequence for each subject of our Mul-

tiface [44] subset. Our benchmark contains a variety of expres-

sions from diverse subjects and view directions.

formed by 360 subjects with a very large number of cal-

ibrated camera views (more than 40) and 3D scans ob-

tained using photogrammetry. To train the network to be

robust to large view-deviations, we select views with up to

a 90◦horizontal and 45◦vertical deviation from frontal view

of the face.

The Stirling dataset contains textured 3D scans of 8 ex-

pressions performed by 140 subjects. These scans are gen-

erated by a calibrated stereo camera setup. We use the

two views from the stereo camera, and generate 30 ad-

ditional synthetic views. These views are generated with

random focal lengths and random view directions. As in

the FaceScape dataset, these view deviations are as high as

90◦horizontally and 45◦vertically.

The FaMoS dataset contains 95 subjects with 28 motion

sequences each. It comes with high-quality FLAME regis-

trations generated with the help of facial markers. It con-

tains 6 RGB camera views, of which we use the forward

facing ones. To balance this dataset, we keep only every
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(a) GT Mesh (b) face (c) ears

(d) eyes (e) mouth (f) nose

Figure 10. Visualization of the masks used to compute our metrics

for the Multiface benchmark. Masks are generated by selecting

vertices from the topologically uniform ground truth mesh (a). We

select masks for the face (b), ear (c), eye (d), mouth (e) and nose

(f) region.

10
th frame.

D.1. Scan registration

Since FLAME [26] mesh registrations are not available for

the FaceScape and Stirling datasets, we generate them us-

ing a semi-automatic annotation process to ensure high ac-

curacy and consistency. For each subject in the datasets, we

do the following: First, we manually annotate 44 landmarks

(eyebrows, eyes, nose and lips) of the neutral scans of each

subject. We then use commercial software to fit the FLAME

topology mesh onto this scan with these landmarks as guid-

ance. After the registration of the neutral mesh, we append

landmarks pre-selected on the topology mesh to the manu-

ally annotated landmarks. We also compute the optical flow

between the frontal view of the neutral face and each ex-

pression using the original RAFT [36] model. The manually

selected and automatically added landmarks are then propa-

gated to the expression images using this optical flow. After

manual correction on propagation failures, these landmarks

are used to fit the topology mesh onto the expression scans.

Using optical flow to propagate the landmarks ensures that

the skin deformation along the surface tangent is precisely

tracked across the scans. This in turn enables our network

to accurately predict skin deformations. See Fig. 11 for an

overview of this annotation process, and Fig. 12 for exam-

ple registration results.

D.2. Data augmentation

All of the above mentioned datasets contain only images

captured in controlled, occlusion-free environments. Sub-

jects are wearing hair caps, special lighting ensure uniform

illumination and the background is dark and clutter-free.

To make our model more robust to outdoor environments

and occlusions due to hair, glasses, etc., we deploy three

types of data-augmentation (see Fig. 13). First, we use com-

mon image-based augmentation techniques such as Gaus-

sian noise, color shift, gray-scale, random rotations, trans-

lations and scale. Second, we deploy background augmen-

tation. This is done by replacing the background of the

ground truth image (computed using the ground truth scan

mesh) with randomly selected images from the Describable

Texture Dataset (DTD). Lastly, we include occlusion aug-

mentation using the technique described by [39]. Random

masks are generated to partially occlude the face. We ex-

tend this technique to also generate semi-transparent occlu-

sions to simulate lighting effects and transparent objects.

D.3. Vertex weights

For the training of our 2D alignment model and model fit-

ting, we focus on the vertices of the face and ear region. To

this end, we introduced the per-vertex weights λi and dense

per-pixel UV weight mask λp in Sec. 3.1. These weights are

visualized in Fig. 14. For vertices and pixels in the face and

ear area, we set a weight of λi = 1 and λp = 1, and for all

other vertices and pixels we set λi = 0.005 and λp = 0.005.

E. Additional Results

In this section, we show additional results to demonstrate

the performance of our method.

In Fig. 15, we show how our tracker more accurately pre-

dicts the per-pixel trajectory than previous methods. This

temporal accuracy is not measured by previous methods,

which underlines the importance of our new SSME metric.

The cumulative error of our method on the NoW Chal-

lenge [34] are plotted and compared in Fig. 16. In Fig. 22

we qualitatively show the effects of ablations to our 3D

model fitting method on the NoW single-view benchmark.

In Fig. 23, we show the importance of per-vertex deforma-

tions on the NoW multi-view benchmark.

In Fig. 17, we show a qualitative comparison between

our dense 2D alignment network architecture and the

ResNet-101 architecture of [42].

In the video extreme expressions.mp4 (included

in the supplementary material), we show how our tracker

can handle extreme view deviations and expressions. Note

the accuracy of our predicted 2D alignment and 3D model

despite challenging facial motions. Finally, we show the

qualitative performance of our tracker compared to other

methods on in-the-wild images in Fig. 24 and Fig. 25.

F. Computational Complexity

The tracking of 520 frames with 17 cameras takes 36 min-

utes on a Quadro RTX 5000 GPU, where MICA, face de-

tection and 2D alignment take 15 minutes, and 3D model
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Figure 11. An overview of our scan annotation process. First, 44 landmarks (marked in green) are manually annotated for the neutral scans

of each subject. The FLAME topology mesh is then fitted onto this scan. For each expression, landmarks pre-selected on the topology

mesh (marked in red) are projected into screen space and propagated using optical flow. With these propagated landmarks, the topology

mesh is fitted onto the expression scans. This optical flow assisted registration pipeline ensures accurate skin deformations tangential to

the scan surface.

Figure 12. Example FLAME [26] registrations from the FaceScape [47] (four columns on the left) and Stirling [1] (two columns on the

right) dataset. Top row contains the ground truth images, middle row contains ground truth scans and bottom row contains the fitted

FLAME meshes. For the Stirling dataset, we generate synthetic views using the available colored 3D scans.

(a) (b) (c) (d)

Figure 13. Examples of our data augmentation: random back-

ground (b), random occlusions (c) and random semi-transparent

occlusions (d). The original image is shown in (a).

fitting takes 21 minutes. For this sequence, the GPU mem-

ory requirement is 4.5 GB. We note that our focus is not

speed, but accuracy for offline 3D data generation.

G. 3D Head Avatar Synthesis

To evaluate the downstream performance of FlowFace on

3D head avatar synthesis, we choose the recent state-of-

the-art method INSTA [56]. INSTA learns a high-quality

deformable NeRF from a tracked video of a moving head,

which can be animated in real time using a proxy FLAME

morphable head model. The original implementation of

INSTA uses head tracking data provided by MPT [57].

We therefore refer to the baseline implementation as MPT-

INSTA and our combination of FlowFace output with IN-

STA as FlowFace-INSTA.

We minimally modify INSTA by replacing their tracker

with ours. As recommended by the authors of INSTA, the

C++ version of the public implementation of INSTA is used
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(a) (b) (c)

Figure 14. Visualization of our FLAME [26] head model vertices

and vertex weights. The FLAME model contains 5023 3D vertices

(a) and their corresponding coordinates in UV space (b). We set

λi = 1 for the vertices shown in green and λi = 0.005 for the

vertices shown in red. (c) shows the UV weight map used for

the dense loss. We set λp = 1 for the areas shown in white and

λp = 0.005 for the areas shown in black.
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Figure 15. A visualization of the pixel-wise motion trajectory error

for some methods. The ground truth and the predicted trajectory

for a pixel (denoted in the images on the left side with a red dot

and arrow) is plotted over the next 30 frames (right side). It is

apparent that our model can track face motion more accurately,

even in areas that are not visually salient such as the forehead (top

row) or the cheek (bottom row). The fact that this motion error is

not measured by previous metrics prompts the need for our screen

space motion error (SSME).

for all experiments. For each frame of the dataset, the IN-

STA implementation expects to be provided with camera

intrinsics and pose, a 3D head mesh, FLAME expression

blendshape coefficients, a depth map covering the face, and

a semantic segmentation map. As described in Sec. 3.2,

our method provides almost all the information we need to

generate the necessary frame data. The only data not gener-
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Figure 16. The cumulative error plot on the NoW Challenge [34]

(single-view) of our method and recent methods. Competitive re-

sults show that our face tracker can disentangle expression and

neutral shape and accurately reconstruct faces even with in-the-

wild images.

Ours Dense [41]

Figure 17. Qualitative comparison between our dense 2D align-

ment network architecture and the ResNet architecture of [42].

Red denotes ground truth alignment, green denotes predicted

alignment. Our alignment network (left column) shows a signifi-

cantly better alignment than [42] (right column) in areas such as

the nose and lip contour (top row) and mouth and cheek region

(bottom row).

ated from our tracker’s output is the semantic segmentation

maps, for which we followed the INSTA implementation

and generated them using BiSeNet [49].

We use two sets of data to compare our enhanced

FlowFace-INSTA to the baseline MPT-INSTA. One dataset

is the full set of 10 videos released with INSTA, where
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Tracker PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓

MPT [57] 31.5 0.949 0.973 0.0410

Ours 31.9 0.953 0.977 0.0367

Table 6. Downstream avatar synthesis results on videos released

with INSTA. By replacing the tracker used in INSTA [56], we

achieve significantly better perceptual similarity (LPIPS).

we adopt the same splits for training and testing frames.

The training and testing splits cover two distinct inter-

vals of each video with no overlap. We use the pre-

trained INSTA models provided by the authors to predict

images for the testing frames which represent the output

of MPT-INSTA. As seen from the image quality metrics

in Tab. 6, FlowFace-INSTA improves LPIPS by 10.5%,

with slight improvements in other metrics (PSNR, SSIM

and MS-SSIM) as well. Qualitatively, we observe that the

improved tracking accuracy of FlowFace result in higher-

quality reconstruction of the eyes and mouth as well as

slightly sharper overall reconstruction, visible in facial skin

and stubble (see Fig. 18). These relatively subtle improve-

ments could account for the superior perceptual quality in-

dicated by LPIPS. We also notice that FlowFace robustly

tracks the head in portions of the video where MPT fails,

as shown in Fig. 19. A video comparing MPT-INSTA and

FLowFace-INSTA is included with the supplementary ma-

terial (avatar synthesis compare.mp4).

The second evaluation dataset is the aforementioned sub-

set of 86 videos from the MultiFace dataset [44]. MultiFace

does not provide its own training and testing splits for the

videos in the dataset. We observe that in many video se-

quences, the subject would perform certain expressions and

then transition to a neutral pose towards the end of the se-

quence. The videos are also very short, being only a few

seconds long. This means that unlike in the first dataset, the

latter portion of each video is biased toward neutral expres-

sions and would not provide an adequate test set. There-

fore, we take the middle 20% of each video as the test set

for that sequence, and use the remainder for training IN-

STA. For both MPT and FlowFace, we perform head track-

ing on the video and train 86 INSTA models separately on

each sequence, without mixing frames of the same subject

from different cameras or sequences. The computed im-

age quality metrics are given in Tab. 7. FlowFace-INSTA

shows a significant improvement of 20.3% for LPIPS over

MPT-INSTA. Other common image quality metrics are ei-

ther slightly better or comparable.

Aside from the photometric reconstruction quality, we

also show in Fig. 20 that our tracker can be used to

transfer motion and expressions between a driver video

of a person and an INSTA model trained on FlowFace

tracking data. A video with an example of expres-

sion transfer is included with the supplementary material

(expression transfer.mp4).
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Figure 18. Qualitative comparison of INSTA results using

MPT [57] (center column) and FlowFace (right column) as face

tracker. More accurate and more consistent tracking throughout

the train and test images by our tracker leads to a more accurate

and detailed reconstruction.

Tracker PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓

MPT [57] 20.2 0.885 0.939 0.1821

Ours 20.1 0.884 0.945 0.1452

Table 7. Downstream avatar synthesis results on MultiFace

dataset videos.

H. Speech-Driven 3D Facial Animation

H.1. Generating Data

We apply our facial reconstruction method on the popular

MEAD [40] dataset to generate 3D-MEAD, a speech to 3D

facial animation dataset. MEAD is a multi-view talking-

face video corpus with 43 English speakers, speaking 40

unique sequences with 8 different emotions. For the pur-

poses of this work, we focus only on the neutral emotion.

We split training, validation, and testing sets into 27, 8,

and 8 speakers, yielding 1080, 320, and 320 animation se-

quences, respectively. We also generate a training subset of

only 8 speakers from the same set of 27 speakers for certain
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Figure 19. Examples of large photometric errors due to failure

of the MPT [57] tracker. The tracked pose of the head (center

column, bottom) by MPT is inaccurate, which leads to a mis-

alignment of the reconstructed image (center column, top) and the

ground truth (left column). This is likely due to the motion blur

present in the ground truth image. Our tracker (left column) can

still accurately predict the head pose, resulting in a better recon-

struction.

studies. In all subsets, there is an equal (when possible) split

of female and male speakers. The dataset contains 7 uncal-

ibrated multi-view videos for each sequence, and we use 4

of these to track the face. An example of our multi-view

tracking on the MEAD dataset can be viewed in Fig. 21 and

in the supplementary videos (mead tracking.mp4). In

the MEAD dataset, images of the subjects with neutral ex-

pressions are not available. However, typical face animation

models such as CodeTalker [46] require the neutral recon-

struction. We can generate this reconstruction with the ac-

curate neutral shape and expression disentanglement of our

tracker.

H.2. Datasets

We utilize the popular VOCASET [9] to train and test differ-

ent methods in our experiments, as well as the 3D-MEAD

dataset. Both contain 3D facial animations paired with

English utterances. VOCASET contains 255 unique sen-

tences, which are partially shared among different speakers,

yielding 480 animation sequences from 12 unique speakers.

Those 12 speakers are split into 8 unique training, 2 unique

validation, and 2 unique testing speakers. Each sequence is

captured at 60 fps, resampled to 30 fps, and ranges between

3 and 4 seconds. We use the same training, validation, and

testing splits as VOCA and FaceFormer, which we simi-

larly refer to as VOCA-Train, VOCA-Val, and VOCA-Test.

For 3D-MEAD, there are 43 unique speakers, where each

speaker has 40 unique sequences, yielding a total of 1680

sequences. We randomly split the dataset into 27, 8, and 8

training, validation, and test speakers. To align with VO-

CASET, we subsample the training set to only containe 8

speakers. We refer to each split as 3D-MEAD-Train, 3D-

MEAD-Val, 3D-MEAD-Test. In both datasets, face meshes

are composed of 5023 vertices of the FLAME [26] topol-

ogy. To train on the downstream task, we combine these two

datasets together and treat VOCA-Train and 3D-MEAD-

Train as a single dataset.

H.3. Training

We implement the popular state-of-the-art transformer-

based model CodeTalker [46], and train it a combined

dataset of 3D-MEAD and VOCASET. This combined

dataset has 16 training speakers, so we increase the one-hot

style encoding to be of size 16. We optimize the network

with Adam [23] and a learning rate of 1× 10
−4 and a batch

size of 1. The network is trained for 100 epochs across three

random seeds, and we report the average results using the

weights from the last epoch in training.

H.4. Results and Discussion

To evaluate the results of our model, we test on the popular

VOCASET benchmark [9] using the lip vertex error (LVE).

The lip vertex error calculates the deviation of the lip posi-

tion in a sequence with respect to the ground truth. More

specifically, it is the maximal L2 error of all lip vertices for

each frame and averaged over all frames. Using the aug-

mented data generated by our method, we are able to im-

prove from a lip vertex error of 3.13× 10
−5 to 2.85× 10

−5

on the VOCASET benchmark, an 8.8% improvement.

As previously mentioned, 3D facial animation models

require the neutral face mesh for their training and infer-

ence. This is because they are trained to predict vertex off-

sets rather than the absolute vertex positions. In practice,

vertex offsets are generated by taking a sequence of facial

meshes and subtracting the neutral mesh. It is therefore vi-

tal that our face tracker accurately disentangles expression

and neutral meshes. We can confidently establish that our

method is able to perform this task effectively given the pos-

itive results obtained.

7



Target

D
ri

v
er

R
es

u
lt

Figure 20. Expression transfer using our tracker and FlowFace-INSTA. First, an INSTA [56] avatar reconstruction is generated using a

video of the target subject. Then, the driving face is reconstructed from a video using our face tracker. The expression and pose are

extracted from the driving sequence and inserted into the target avatar and novel views are synthesized.

Figure 21. 3D data generation using the MEAD [40] dataset. Our face tracker can seamlessly integrate multiple-view video to improve 3D

face tracking. Extrinsics, intrinsics and the 3D face model (right column) are simultaneously optimized to fit the predicted 2D alignment

(center column) in our 3D model fitting module. We utilize 4 cameras for each sequence to generate high quality training data for speech-

driven 3D face animation models.
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GT MICA only w/o MICA Ours
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GT MICA only w/o MICA Ours

Figure 22. Ablations of our 3D model fitting module on the NoW

validation set (single-view). Figures show qualitative results of

MICA predictions (MICA only), without MICA prediction (w/o

MICA) and the full model fitting pipeline (Ours). Comparing to

the ground truth scan, our full model with MICA template predic-

tion produces more accurate results than without MICA template,

which is visible in the 3D visualizations (top two rows) and the

error plot (bottom row), where cold colors represent lower error.

Our model is also able to improve on the MICA template recon-

struction.

Input images

GT w/o δd w/o MICA Ours

Input images

GT w/o δd w/o MICA Ours

Figure 23. Ablations of our 3D model fitting module on the NoW

validation set (multi-view). Figures show qualitative results with-

out per-vertex deformations (w/o δt), without MICA prediction

(w/o MICA) and the full model fitting pipeline (Ours). Multiple

views allow us to enable per-vertex deformations. Comparing to

the ground truth scan, our full model with per-vertex deformations

produces more accurate results in the nose region, which is visible

in the 3D visualizations (top two rows) and the error plot (bottom

row), where cold colors represent lower error. The MICA tem-

plate prediction aids the accurate disentanglement of expression

and neutral head shape.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 24. Qualitative results on in-the-wild images. (a) shows the ground truth image, (b) our 2D alignment, (c) and (d) our reconstruction,

(e) shows reconstructions from HRN [24], (f) DECA [14], (g) SADRNet [32] and (h) 3DDFAv2 [19]. Despite being trained only on in-

the-lab images, our 2D alignment module produces pixel-accurate alignment. The model fitter uses this alignment to produce accurate 3D

reconstruction, even from single images. This shows that our tracker generalizes well to images with challenging occlusions, lighting.

10



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 25. Qualitative results on in-the-wild images. (a) shows the ground truth image, (b) our 2D alignment, (c) and (d) our reconstruction,

(e) shows reconstructions from HRN [24], (f) DECA [14], (g) SADRNet [32] and (h) 3DDFAv2 [19]. Despite being trained only on in-

the-lab images, our 2D alignment module produces pixel-accurate alignment. The model fitter uses this alignment to produce accurate 3D

reconstruction, even from single images. This shows that our tracker generalizes well to images with challenging occlusions, lighting.
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