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A. Additional Related Work
A vast literature examines the success of deep learn-
ing using inductive biases of optimization methods
(e.g. SGD [48]) and architectures (e.g. CNNs [11], trans-
formers [90]). This paper instead examines implicit induc-
tive biases in unstructured architectures.

Parametrization of NNs. It is challenging to under-
stand the structure and “effective dimensionality” of the
weight space of NNs because multiple weight configura-
tions and their permutations correspond to the same func-
tion [17, 71, 89]. A recent study quantified the information
needed to identify a model with good generalization [8].
However, the estimated values are astronomical (meaning
that no dataset would ever be large enough to learn the tar-
get function). Our work reconciles these results with the
reality (the fact that deep learning does work in practice)
by showing that the overlap of the set of good generalizing
functions with uniform samples in weight space [8, Fig. 1]
is much denser than its overlap with truly random functions.
In other words, random sampling in weight space generally
yields functions likely to generalize. Much less information
is needed to pick one solution among those than estimated
in [8].

Some think that “stronger inductive biases come at the
cost of decreasing the universality of a model” [13]. This is
a misunderstanding of the role of inductive biases: they are
fundamentally necessary for machine learning and they do
not imply a restriction on the set of learnable functions. We
show in particular that MLPs have strong inductive biases
yet remain universal.

The simplicity bias refers to the observed tendency of NNs
to fit their training data with simple functions. It is desirable
when it prevents overparametrized networks from overfit-
ting the training data [3, 53]. But it is a curse when it causes
shortcut learning [25, 75]. Most papers on this topic are
about trained networks, hence they confound the inductive
biases of the architectures and of the optimization. Most ex-
planations of the simplicity bias involve loss functions [52]
and gradient descent [2, 32, 41, 73].

Work closer to ours [12, 44, 79] examines the simplic-
ity bias of networks with random weights. These studies
are limited to MLPs with binary inputs/outputs, ReLU ac-
tivations, and/or simplicity measured as compressibility. In
contrast, we examine more architectures and other measures
of complexity. Earlier works with random-weight networks
include [23, 27, 40, 43, 50, 54, 56, 63].

Goldblum et al. [29] proposed that NNs are effective be-

cause they combine a simplicity bias with a flexible hypoth-
esis space. Thus they can represent complex functions and
benefit from large datasets. Our results also support this
argument.

The spectral bias [57] or frequency principle [84] is a par-
ticular form of the simplicity bias. It refers to the observa-
tion that NNs learn low-frequency components of the target
function earlier during training.6 Works on this topic are
specific to gradient descent [70, 85]. and often to ReLU
networks [35, 38, 88]. Our work is about properties of ar-
chitectures independent of the training.

Work closer to ours [86] has noted that the spectral bias
exists with ReLUs but not with sigmoidal activations, and
that it depends on weight magnitudes and depth (all of
which we also observe in our experiments). Their analy-
sis uses the neural tangent kernel (NTK) whereas we use
a Fourier decomposition of the learned function, which is
arguably more direct and intuitive. We also examine other
notions of complexity, and other architectures.

In work concurrent to ours, Abbe et al. [1] used Walsh
decompositions (a variant of Fourier analysis suited to bi-
nary functions) to characterize learned binary classification
networks. They also propose that typical NNs preferably
fit low-degree basis functions to the training data and this
explains their generalization capabilities. Their discussion,
which focuses on classification tasks, is highly complemen-
tary to ours.

The “deep image prior” [78] is an image processing
method that exploit the inductive biases of an untrained net-
work. However it specifically relies on convolutional (U-
Net) architectures, whose inductive biases have little to do
with those studied in this paper.

Measures of complexity. Quantifying complexity is an
open problem in the fundamental sciences. Algorithmic
information theory (AIT) and Kolmogorov complexity are
one formalization of this problem. Kolmogorov complex-
ity has been proposed as an explicit regularizer to train NNs
by Schmidhuber [62]. Dingle et al. [15] used AIT to explain
the prevalence of simplicity in the real-world with examples
in biology and finance. Building on this work, Valle-Perez
et al. [79] showed that binary ReLU networks with random
weights have a similar bias for simplicity. Our work extends

6Frequencies of the target function, used throughout this paper,
should not be confused with frequencies of the input data. For example,
high frequencies in images correspond to sharp edges. High frequencies
in the target function correspond to frequent changes of label for similar
images. A low-frequency target function means that similar inputs usually
have similar labels.



this line of inquiry to continuous data, to other architectures,
and to other notions of complexity.

Other measures of complexity for to machine learn-
ing models include four related notions: sensitivity, Lips-
chitz constant, norms of input gradients, and Dirichlet en-
ergy [14]. Hahn et al. [30] adapted “sensitivity” to the dis-
crete nature of language data to measure the complexity of
language classification tasks and of models.

Simplicity bias in transformers. Zhou et al. [90] ex-
plain generalization of transformer models on toy reason-
ing tasks using a transformer-specific measure of complex-
ity. They propose that the function learned by a transformer
corresponds to the shortest program (in a custom program-
ming language) that could generate the training data. Bhat-
tamishra et al. [7] showed that transformers are more biased
for simplicity than LSTMs.

Controlling inductive biases. Recent work has inves-
tigated how to explicitly tweak the inductive biases of
NNs through learning objectives [75, 76] and architec-
tures [10, 74]. Our results confirms that the choice of acti-
vation function is critical [16]. Most studies on activation
functions focus on individual neurons [63] or compare the
generalization properties of entire networks [49]. Francazi
et al. [18] showed that some activations cause a model at
initialization to have non-uniform preference over classes.
Simon et al. [67] showed that the behaviour of a deep MLP
can be mimicked by a single-layer MLP with a specifically-
crafted activation function.

Implicit neural representations (INRs) are an application
of NNs with a need to control their spectral bias. An INR
is a regression network trained to represent e.g. one spe-
cific image by mapping image coordinates to pixel inten-
sities (they are also known as neural fields or coordinate
MLPs). To represent sharp image details, a network must
represent a high-frequency function, which is at odds with
the low-frequency bias of typical architectures. It has been
found that replacing ReLUs with periodic functions [81,
Sect. 5], Gaussians [58], or wavelets [61] can shift the spec-
tral bias towards higher frequencies [60]. Interestingly, such
architectures (Fourier Neural Networks) were investigated
as early as 1988 [22]. Our work shows that several findings
about INRs are also relevant to general learning tasks.

B. Why Study Random-Weight Networks?
A motivation can be found in prior work that argued for
interpreting the inductive biases of an architecture as a prior
over functions that plays in the training of the model by
gradient descent.

Mingard et al. [44] and Valle-Perez et al. [79] argued that
the probability of sampling certain functions upon random
sampling in parameter space could be treated as a prior over
functions for Bayesian inference. They then presented pre-

liminary empirical evidence that training with SGD does
approximate Bayesian inference, such that the probability
of landing on particular solutions is proportional to their
prior probability when sampling random parameters.

C. Formal Statement of the NRS
We denote with

• F : the target function we want to learn;

• fθ: a chosen neural architecture with parameters θ;

• f⋆ := fθ⋆ : a trained network with θ⋆ optimized s.t.
f⋆ approximates F ;

• f̄ :=fθ̄, θ̄∼pprior(θ): an untrained random-weight net-
work with parameters drawn from an uninformed prior,
such as the uniform distribution used to initialize the net-
work prior to gradient descent.

• C(f): a scalar estimate the of complexity of the func-
tion f as proposed in Section 2;

• perf(f): a scalar measure of generalization perfor-
mance i.e. how well f approximates F , for example the
accuracy on a held-out test set.

The Neural Redshift (NRS) makes three propositions.

1. NNs are biased to implement functions of a particular
level of complexity determined by the architecture.

2. This preferred complexity is observable in networks
with random weights from an uninformed prior.
Formally, ∀ architecture f , distribution pprior(θ),
∃ preferred complexity c ∈ R s.t.
C(f̄) = c with very high probability, and
C(f⋆) = g(c) with g : R→ R a monotonic function.

This means that the choice of architecture shifts the com-
plexity of the learned function up or down similarly as it
does an untrained model’s. The precise shift is usually
not predictable because g(·) is unknown.

3. Generalization occurs when the preferred complexity
of the architecture matches the target function’s.
Formally, given two architectures f1, f2 with preferred
complexities c1, c2, the one with a complexity closer
to the target function’s achieves better generalization:

|C(F )− g(c1)| < |C(F )− g(c2)|
=⇒ perf(f⋆

1 ) > perf(f⋆
2 ) .

For example, ReLUs are popular because their low-
complexity bias often aligns with the target function.



D. Technical Details

Activation functions. See Figure 11 for a summary of the
activations used in our experiments and [16] for a survey.

Discrete network evaluation. For a given network that
implements the function f(x) of input x ∈ Rd, we ob-
tain obtain a discrete representation as follows. We de-
fine a sequence of points Xgrid = {xi}m

d

i=1 corresponding
to a regular grid on the d-dimensional hypercube [−1, 1]d,
with m values in each dimension (m = 64 in our exper-
iments) hence md points in total. We evaluate the net-
work on every point. This gives the sequence of scalars
Yf ={f(xi) : xi∈Xgrid}.
Visualizations as grayscale images. For a network f with
2D inputs (d = 2) we produce a visualization as a grayscale
image as follows. The values in Yf are simply scaled and
shifted to fill the range from black (0) to white (1) as:

Ỹ = (Y−min(Y)) / (max(Y)−min(Y)).
We then reshape Ỹ into an m×m square image.

Measures of complexity. We use our measures of com-
plexity based on Fourier and polynomial decompositions
only with d =2 because of the computational expense. These
methods first require an evaluation of the network on a dis-
crete grid as described above (Yf ) whose size grows expo-
nentially in the number of dimensions d.

Xu et al. [84] proposed two approximations for Fourier
analysis in higher dimensions. They were not used in our
experiments but could be valuable for extensions of our
work to higher-dimensional settings.

Fourier decomposition. To compute the measure of com-
plexity CFourier(f), we first precompute values of f on a dis-
crete grid Xgrid, yielding Yf as describe above. We then
perform a standard discrete Fourier decomposition with
these precomputed values. We get:

f̃(k) = Σx∈Xgrid
ωx⊺k f(x)

where ω = e−2πi/m and k ∈ Zd are discrete frequency
numbers. Per the Nyquist-Shannon theorem, with an eval-
uation of f on a grid of m values in each dimension, we
can reliably measure the energy for frequency numbers up
to m/2 in each dimension i.e. for k ∈ K=[0, ...,m/2]d.

The value f̃(k) is a complex number that captures both
the magnitude and phase of the kth Fourier component. We
do not care about the phase, hence our measure of com-
plexity only uses the real magnitude |f̃(k)| of each Fourier
component k. We then seek to summarize the distribution
of these magnitudes across frequencies into a single value.
We define the measure of complexity:

CFourier(f) = Σk∈K |f̃(k)| . ||k||2 / Σk∈K |f̃(k)|.
This is the average of magnitudes, weighted each by the
corresponding frequency, disregarding orientation (e.g. hor-
izontal and vertical patterns in a 2D visualization of the

function are treated similarly), and normalized such that
magnitudes sum to 1.

See [57] for a technical discussion justifying Fourier
analysis on non-periodic bounded functions.

Limitations of a scalar measure of complexity. The
above definition is necessarily imperfect at summarizing the
distributions of magnitudes across frequencies. For exam-
ple, an f containing both low and high-frequencies could
receive the same value as one containing only medium fre-
quencies. In practice however, we use this complexity mea-
sure on random networks, and we verified empirically that
the distributions of magnitudes are always unimodal. This
summary statistic is therefore a reasonable choice to com-
pare distributions.

Polynomial decomposition. As an alternative to Fourier
analysis, we use decomposition in polynomial series.7 It
uses a predefined set of polynomials Pn(x), n = [0, ..., N ]
to approximate a function f(x) on the interval x ∈ [−1, 1]
as f(x) ≈ ΣN

c=0 cnPn(x). The coefficients are calculated
as cn=0.5 (2n+ 1)

∫ +1

−1 f(x)Pn(x) dx. These definitions
readily extends to higher dimensions.

In a Fourier decomposition, the coefficients indicate the
amount the various frequency components in f . Here, each
coefficient cn indicates the amount of a component of a cer-
tain order. In 2 dimensions (d = 2), we have N2 coefficients
c00, c01, ..., cNN . We define our measure of complexity:

CChebyshev(f) =
ΣN

n1,n2=0 |cn1n2
| . || [n1,n2] ||2

ΣN
n1,n2=0 |cn1,n2|

.

This definition is nearly identical to the Fourier one.
In practice, we experimented with Hermite, Legendre,

and Chebyshev bases of polynomials. We found the latter
to be more numerically stable. To compute the coefficients,
we use trapezoidal numerical integration and the same sam-
pling of f on Xgrid as described above, and a maximum
order N =100. To make the evaluation of the integrals more
numerically stable (especially with Legendre polynomials),
we omit a border near the edges of the domain [−1, 1]d.
With a 64× 64 grid, we omit 3 values on every side.

LZ Complexity. We use the compression-based measure
of complexity described in [15, 79] as an approximation of
the Kolmogorov complexity. We first evaluate f on a grid to
get Yf as described above. The values in Yf are reals and
generally unique, so we discretize them on a coarse scale of
10 values regularly spaced in the range of Yf (the granular-
ity of 10 is arbitrary can be set much higher with virtually no
effect if Yf is large enough). We then apply the classical
Lempel–Ziv compression algorithm on the resulting num-
ber sequence. The measure of complexity CLZ(f) is then
defined as the size of the dictionary built by the compres-
sion algorithm. The LZ algorithm is sensitive to the order

7See e.g. https://www.thermopedia.com/content/918/.

https://www.thermopedia.com/content/918/
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Figure 11. Activation functions used in our experiments.

of the sequence to compress, but we find very little differ-
ence across different orderings of Yf (snake, zig-zag, spiral
patterns). Thus we use a simple column-wise vectorization
of the 2D grid.

In higher dimensions (Colored-MNIST experiments), it
would be computationally too expensive to define Xgrid as
a dense sampling of the full hypercube [−1, 1]d (since d
is large). Instead, we randomly pick m corners of the hy-
percube and sample m points xi regularly between each
successive pair of them. This gives a total of m2 points cor-
responding to random linear traversals of the input space.
Instead of feeding Yf directly to the LZ algorithm, we
also feed it with successive differences between succes-
sive values, which we found to improve the stability of
the estimated complexity (for example, the pixel values
10, 12, 15, 18 are turned into 2, 3, 3).

LZ Complexity with transformers. These experiments
use CLZ(f) on sequences of tokens. Each token is repre-
sented by its index in the vocabulary, and the LZ algorithm
is directly applied on these sequences of integers.

Absolute complexity values. The different measures of
complexity have different absolute scales and no compara-
ble units. Therefore, for each measure, we rescale the val-
ues such that observed values fill the range [0, 1].

Unbiased model. We construct an architecture that dis-
plays no bias for any frequency in a Fourier decomposition
of the functions it implements. This architecture fθ(·) im-
plements an inverse discrete Fourier transform with learn-
able parameters θ = {θmag, θphase} that correspond to the
magnitude and phase of each Fourier component. It can
be implement as a one-hidden-layer MLP with sine acti-
vation, fixed input weights (each channel defining the fre-
quency of one Fourier component), learnable input biases
(the phase shifts), and learnable output weights (the Fourier
coefficients).

Experiments with modulo addition. These experiments
use a 4-layer MLP of width 128. We train them with full-
batch Adam, a learning rate 0.001, for 3k iterations with
no early stopping. Each experiment is run with 5 random
seeds. The Figure 7 shows the average over seeds for clar-
ity (each point corresponds to a different architecture). Fig-
ure 8 shows all seeds (each point corresponds to a different
seed).

Experiments on Colored-MNIST. The dataset is built

from the MNIST digits, keeping the original separation be-
tween training and test images. To define a regression task,
we turn the original classification labels {0, 1, ..., 9} into
values in [0, 1]. To introduce a spurious feature, each im-
age is concatenated with a column of pixels of uniform
grayscale intensity (the “color” of the image). This “color”
is directly correlated with the label with some added noise
to simulate a realistic spurious feature: in 3% of the training
data, the color is replaced with a random one.

The models are 2-layer MLPs of width 64. They are
trained with an MSE loss with full-batch Adam, learning
rate 0.002, 10k iterations with no early stopping. The “accu-
racy” in our plots is actually: 1−MAE (mean average error).
Since this is a regression task with test labels distributed
uniformly in [0, 1], this metric is indeed interpretable as a
binary accuracy, with 0.5 equivalent to random chance.
Experiments with transformers. In all experiments de-
scribed above, we directly examine the input−→ output map-
pings implemented by neural networks. In the experiments
with transformer sequence models, we examine sequences
generated by the models. These models are autoregressive,
which means that the function they implement is the map-
ping context−→ next token. We expect a simple function
(e.g. low-frequency) to produce lots of repetitions in se-
quences sampled auto-regressively. (language models are
indeed known to often repeat themselves [21, 34]). Such
sequences are highly compressible. They should therefore
give a low values of CLZ.



E. Additional Experiments with
Trained Models

This section presents experiments with models trained with
standard gradient descent. We will show that there is a cor-
relation between the complexity of a model at initialization
(i.e. with random weights) and that of a trained model of the
same architecture.

Setup with coordinate-MLPs. The experiments in this
section use models trained as implicit neural representations
of images (INRs), also known as coordinate-MLPs [81].
Such a model is trained to represent a specific grayscale
image, It takes as input 2D coordinates in the image plane
x ∈ [−1, 1]2. It produces as output the scalar grayscale
value of the image at this location. The ground truth data
is a chosen image (Figure 12). For training, we use a subset
of pixels. For testing, we evaluate the network on a 64×64
grid, which directly gives a 64×64 pixel representation of
the function learned.

Why use coordinate-MLPs? This setup produces in-
terpretable visualizations and allows comparing visually
the ground truth (original image) with the learned func-
tion. Because the ground truth is defined on a regular
grid (unlike most real data) it also facilitates the compu-
tation of 2D Fourier transforms. We use Fourier trans-
forms to quantitatively compare the ground truth with
the learned function and verify the third part of the NRS
(generalization is enabled by matching of the architec-
ture’s preferred complexity with the target function’s).

Data. We use a 64 × 64 pixel version of the well-known
cameraman image (Figure 12, left) [26]. For training, we
use a random 40% of the pixels. This image contains
both uniform areas (low frequencies) and fine details with
sharp transitions (high frequencies). We also use a synthetic
waves image (Figure 12, right). It is the sum of two orthog-
onal sine waves, one twice the frequency of the other. For
training, we only use pixels on local extrema of the image.
They form a very sparse set of points. This makes the task
severely underconstrained. A model can fit this data with a
variety functions. This will reveal whether a model prefers
fitting low- or high-frequency patterns.

E.1. Visualizing Inductive Biases

We first perform experiments to get a visual intuition of
the inductive biases provided by different activation func-
tions. We train 3-layer MLPs of width 64 with full-batch
Adam and a learning rate of 0.02 on the cameraman and
waves data. Figure 13 (next page) shows very different
functions across architectures. The cameraman image con-
tains fine details with sharp edges. Their presence in the
reconstruction indicate whether the model learned high-
frequency components.

Cameraman Waves

Full
data

Training
points

Figure 12. Data used in the coordinate-MLP experiments.

Differences across architectures. The ReLU-like activa-
tions are biased for simplicity, hence the learned functions
tend to smooth out image details, favor large uniform re-
gions and smooth variations. Yet, they can also represent
sharp transitions, when these are necessary to fit the training
data. The decision boundary with ReLUs, which is a poly-
tope [47] is faintly discernible as criss-crossing lines in the
image. Surprisingly, we observe differences across different
initial weight magnitudes with ReLU, even though our ex-
periments on random networks did not show any such effect
(Section 3). We believe that this is a sign of optimization
difficulties when the initial weights are large (i.e. difficulty
of reaching a complex solution).

With other activations (TanH, Gaussian, sine) the bias
for low or high frequencies is much more clearly modulated
by the initial weight magnitude. With large magnitudes, the
images contain high-frequency patterns. Similar observa-
tions are made with the waves data (Figure 14).

The unbiased model is useless, as expected. It reaches
perfect accuracy on the training data, but the predictions on
other pixels look essentially random.

With random weights. We also examine in Figure 13 the
function represented by each model at initialization (with
random weights). As expected, we observe a strong cor-
relation between the amount of high frequencies at initial-
ization and in the trained model. We also examine mod-
els at the end of training, after shuffling the trained weights
(within each layer). This is another random-weight model,
but its distribution of weight magnitudes matches exactly
the trained model. Indeed, the shuffling preserves the
weights within each layer but destroys the precise connec-
tions across layers. This enables a very interesting obser-
vation. With non-ReLU-like architectures, there is a clear
increase in complexity between the functions at initializa-
tion and with shuffled weights. This means that the learned
increase in complexity in non-ReLU networks is partly
encoded by changes in the distribution of weight magni-
tudes (the only thing preserved through shuffling). In con-
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Figure 13. Coordinate-MLPs trained to represent the cameraman with various activations and initial weight magnitudes. The model is
trained on 40% pf pixels and evaluated on a 64×64 grid. The images provide intuitions about the inductive biases of each architecture. The
differences across models with random weights (at init.) and with shuffled trained weights (shuffled) show that the increase in complexity in
non-ReLU models is realized by changes in weight magnitudes (which are maintained through the shuffling). In contrast, ReLU networks
revert to a low complexity after shuffling, suggesting that complexity is encoded in the precise weight values, not their magnitudes.
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Figure 14. Coordinate-MLPs trained on sparse points of the waves data. Variations across learned functions show how architectures are
biased towards low (ReLU) or high frequencies (Sine). ReLU activations give the most consistent behaviour across weight magnitudes.

trast, ReLU networks revert to a low complexity after shuf-
fling. This suggests that complexity in ReLU networks is
encoded in the weights’ precise values and connections
across layers, not in their magnitude.

E.2. Training Trajectories

We will now show that NNs can represent any function, but
complex ones require precise weight values and connec-
tions across layers that are unlikely through random sam-
pling but that can be found through gradient-based training.

Unlike prior work [59] that claimed that the complexity
at initialization causally influences the solution, our results
indicate instead they are two effects of a common cause (the
“preferred complexity” of the architecture). The architec-
ture is biased towards a certain complexity, and this influ-
ences both the randomly-initialized model and those found
by gradient descent. There exist weight values for other
functions (of complexity much lower or higher than the pre-
ferred one) but they are less likely to occur in either case.

For example, ReLU networks are biased towards sim-
plicity but can represent complex functions. Yet, contrary
to [59], initializing gradient descent with such a complex
function does not yield a complex solutions after training
on simple data. In other words, the architecture’s bias pre-
vails over the exact starting point of the training.
Experimental setup. We train models with different acti-
vations and initial magnitudes on the cameraman data, using
1/9 pixels for training. We plot in Figure 16 the training tra-
jectory of each model. Each point of a trajectory represents
the average weight magnitude vs. the Fourier complexity of
the function represented by the model.

Changes in weight magnitudes during training. The first
observation is that the average weight magnitude changes
surprisingly little. However, further examination (Fig-
ure 15) shows that the distribution shifts from uniform to
long-tailed. The trained models contain more and more
large-magnitude weights.

Changes in complexity during training. In Figure 16,
we observe that models with ReLU-like activations at ini-
tialization have low complexity regardless of the initializa-
tion magnitude. As training progresses, the complexity in-
creases to fit the training data. This increased complex-
ity is encoded in the weights’ precise values and connec-
tions across layers, since at the end of training, shuffling
the weights reverts models back to the initial low complex-
ity. With other activations, the initial weight magnitudes
impact the complexity at initialization and of the trained
model. Some of the additional complexity in the trained
model seems to be partly encoded by increases in weight
magnitudes, since shuffling the trained weights does seem
to retain some of this additional complexity.

Summary. The choice of activation function and initial
weight magnitude affect the “preferred complexity” of a
model. This complexity is visible both at initialization (with
random weights) and after training with gradient descent.
The complexity of the learned function can depart from the
“preferred level” just enough to fit the training points. Out-
side the interpolated training points, the shape of the learned
function is very much affected by the preferred complexity.

With ReLU networks, this effect usually drives the com-
plexity downwards (the simplicity bias). With other archi-
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Figure 15. Distributions of the magnitudes of the weights, biases, and activations during training of a 3-layer MLP (the 4th row is
the output layer) on the cameraman data. Weights and biases are initialized from a uniform distribution and zero, respectively. The
distributions become very long-tailed as training progresses. The occurrence of large values is the reason why the dependence of the
“preferred complexity” of certain architecture on weight magnitudes is important (it would not matter if the distribution of magnitudes
remained constant throughout training).

tectures and large weight magnitudes, this often drives the
complexity upwards. Both can be useful: Section 4 showed
that sine activations can enable learning the parity function
from sparse training points, and reduce shortcut learning by
shifting the preferred complexity upwards.

Our observations also explain why the coordinate-MLPs
with sine activations proposed in [68] (SIREN) require a
careful initialization. This adjusts the preferred complexity
to the typical frequencies found in natural images.

E.3. Pretraining and Fine-tuning

We outline preliminary results from additional experiments.

Why study fine-tuning? We have seen that the preferred
complexity of an architecture can be observed with random
weights. The model can then be trained by gradient descent
to represent data with a different level of complexity. For
example, a ReLU network, initially biased for simplicity,
can represent a complex function after training on complex
data. Gradient descent finely adjusts the weights to repre-
sent a complex function. We will now see how pretraining

then fine-tuning on data with different levels of complexity
“blends” the two in the final fine-tuned model.

Experimental setup. We pretrain an MLP with ReLU or
TanH activations on high-frequency data (high-frequency
2D sine waves). We then fine-tune it on lower-frequency
2D sine waves of a different random orientation.

Observations. During early fine-tuning iterations, TanH
models retain a high-frequency bias much more than ReLU
models. This agrees with the proposition in E.1 that the for-
mer encode high frequencies in weight magnitudes, while
ReLU models encode them in precise weight values, which
are quickly lost during fine-tuning.

We further verify this explanation by shuffling the pre-
trained weights (within each layer) before fine-tuning. The
ReLU models then show no high-frequency bias at all
(since the precise arrangement of weights is completely lost
through the shuffling). TanH models, however, do still show
high-frequency components in the fine-tuned solution. This
confirms that TanH models encode high frequencies partly
in weight magnitudes since this is the only property pre-
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Figure 16. Training trajectories of MLP models trained on the cameraman data. Each line corresponds to one training run (with a
different seed or initial weight magnitude). With ReLU-like activations, the models at initialization have low complexity regardless of the
initialization magnitude. As training progresses, the complexity increases to fit the training data. This increased complexity is encoded in
the weights precise values and connections across layers, since at the end of training, shuffling the weights reverts models to the initial low
complexity. With other activations, the initial weight magnitude impacts the complexity at initialization and of the trained model. Some
of the additional complexity in the trained model seems to be partly encoded by increases in the weight magnitudes, since shuffling the
trained weights does seem to retain some of this additional complexity.

served by the shuffling.
Finally, we do not find evidence for the prior

claim [59] that complexity at initialization persists indef-
initely throughout fine-tuning. Instead, with enough it-
erations of fine-tuning, any pretraining effect on the pre-
ferred complexity eventually vanishes. For example, a
ReLU model pretrained on high frequencies initially con-
tains high-frequency components in the fine-tuned model.
But with enough iterations, they eventually disappear i.e.
the simplicity bias of ReLUs eventually takes over. We be-
lieve that the experiments in [59] were simply not run for
long enough. This observation also disproves the causal
link proposed in [59] between the complexity at initializa-
tion and in the trained model.



F. Full Results with Random Networks
On the next pages (Figures 19–21), we present heatmaps showing the average complexity of functions implemented by
neural networks of various architectures with random weights and biases. Each heatmap corresponds to one architecture with
varying number of layers (heatmap columns) and weight magnitudes (heatmap rows). For every other cell of a heatmap, we
visualize, as a 2D grayscale image, a function implemented by one such a network with 2D input and scalar output.
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Figure 17. All measures of complexity (Y axes) of random networks generally increase with weight/activation magnitudes (X axis). The
sensitivity is however very different across activation functions (columns). This sensitivity also increases with multiplicative interactions
(i.e. gating), decreases with residual connections, and is essentially absent with layer normalization. These effects are also visible on the
heatmaps (see next pages), but faint hence visualized here as line plots.
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Figure 18. Correlations between our measures of complexity on random networks. They are based on frequency (Fourier), polynomial
order (Legendre, Chebyshev), or compressibility (LZ). They capture different notions, yet they are closely correlated.
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Figure 19. Heatmaps of the average complexity (Fourier) of various architectures with random weights, and example functions.
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Figure 20. Same as Figure 19 with the LZ measure instead of the Fourier-based one. Results are nearly identical.
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Figure 21. Same as Figure 19 with the LZ measure instead of the Fourier-based one. Results are nearly identical but noisier.
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