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8. Details on the non-linear example

Derivation of DG We have
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1

|G|
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(7)
yielding the desired result. The second step uses the fact
that B2 = B1 + P and that B1 and prox are G-equivariant
functions. The third step just uses that B1 is a G-equivariant
function.

Numerical details for Figure 2 For both the leftmost and
rightmost examples, we consider the group G consisting of
permuations of the coordinates of the vectors. This is a
group with a single element g, the matrix representation of
its linear application being the unitary matrix

Tg =

✓
0 1
1 0

◆
. (8)

In the leftmost example, we use A = diag(2, 1), B1 = I
(B1 is thus G-equivariant) and � = 10. The perturbation
and its G-average are

P =

✓
�0.228 �0.023
0.066 0.1

◆
PG =

✓
�0.064 0.022
0.022 �0.064

◆
,

with associated norms kPkF = 0.26, kPGkF = 0.10. The
(PnP) algorithm is ran with � = 5e� 2.

In the rightmost example, we use A = diag(2, 5e � 4),
B1 = I and � = 2. The perturbation and its G-average are

P =

✓
0.0275 0.0244
0.0112 �0.1842

◆
, PG =

✓
�0.0783 0.0178
0.0178 �0.0783

◆
,

with associated norms kPkF = 0.0469, kPGkF = 0.0366.
The (PnP) algorithm is ran with � = 0.2.

9. MC sampling and Reynolds averaging

We compare in Table 5 the performance of the equivariant
architecture when training with the proposed Monte-Carlo
(MC) scheme vs the true averaging. It shows no differ-
ence in final performance while the MC strategy decrease
the computational complexity by a factor 4.

Architecture Dataset Monte-Carlo Sample Reynolds Average
DnCNN BSD10 30.698± 1.645 30.684± 1.645
DRUNet fastMRI 30.678± 0.740 30.646± 0.752
LipDnCNN Set3C 32.705± 0.868 32.706± 0.868

Table 5. Performance of algorithms from Fig. 4 when relying on
Monte-Carlo estimates and averaged equivariant architectures.

10. Equivariant algorithms

The equivariant counterpart of (PnP) is

Sample gk ⇠ G

Set eDG,k(x) = T�1
gk D(Tgkx)

xk+1 = eDG,k
�
xk � �A>(Axk � y)

�
.

(eq. PnP)

The equivariant counterpart of (RED) is

Sample gk ⇠ G

Set eDG,k(x) = T�1
gk D(Tgkx)

xk+1 = xk � �A>(Axk � y)

� ��(xk � eDG,k(xk)).

(eq. RED)

The equivariant counterpart of (ULA) is

Sample gk ⇠ G

Set eDG,k(x) = T�1
gk D(Tgkx)

xk+1 = xk � �A>(Axk � y)

� ��(xk � eDG,k(xk)) +
p
2�✏k.

(eq. ULA)
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