Equivariant plug-and-play image reconstruction

Supplementary Material

8. Details on the non-linear example

Derivation of $D_{\mathcal{G}}$ We have

$$D_{\mathcal{G}}(x) = \frac{1}{|\mathcal{G}|} \sum T_g^{-1} B_2 \operatorname{prox}_{\gamma\lambda\|\cdot\|_1}(B_1 T_g x)$$
$$= \frac{1}{|\mathcal{G}|} \sum T_g^{-1}(B_1 + P) T_g \operatorname{prox}_{\gamma\lambda\|\cdot\|_1}(B_1 x)$$
$$= \left(B_1 + \frac{1}{|\mathcal{G}|} \sum T_g^{-1} P T_g\right) \operatorname{prox}_{\gamma\lambda\|\cdot\|_1}(B_1 x)$$
(7)

yielding the desired result. The second step uses the fact that $B_2 = B_1 + P$ and that B_1 and prox are \mathcal{G} -equivariant functions. The third step just uses that B_1 is a \mathcal{G} -equivariant function.

Numerical details for Figure 2 For both the leftmost and rightmost examples, we consider the group \mathcal{G} consisting of permuations of the coordinates of the vectors. This is a group with a single element g, the matrix representation of its linear application being the unitary matrix

$$T_g = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}.$$
 (8)

In the leftmost example, we use A = diag(2, 1), $B_1 = I$ (B_1 is thus \mathcal{G} -equivariant) and $\lambda = 10$. The perturbation and its \mathcal{G} -average are

$$P = \begin{pmatrix} -0.228 & -0.023 \\ 0.066 & 0.1 \end{pmatrix} \quad P_{\mathcal{G}} = \begin{pmatrix} -0.064 & 0.022 \\ 0.022 & -0.064 \end{pmatrix},$$

with associated norms $||P||_F = 0.26$, $||P_G||_F = 0.10$. The (PnP) algorithm is ran with $\gamma = 5e - 2$.

In the rightmost example, we use A = diag(2, 5e - 4), $B_1 = I$ and $\lambda = 2$. The perturbation and its \mathcal{G} -average are

$$P = \begin{pmatrix} 0.0275 & 0.0244 \\ 0.0112 & -0.1842 \end{pmatrix}, P_{\mathcal{G}} = \begin{pmatrix} -0.0783 & 0.0178 \\ 0.0178 & -0.0783 \end{pmatrix}$$

with associated norms $||P||_F = 0.0469$, $||P_G||_F = 0.0366$. The (PnP) algorithm is ran with $\gamma = 0.2$.

9. MC sampling and Reynolds averaging

We compare in Table 5 the performance of the equivariant architecture when training with the proposed Monte-Carlo (MC) scheme vs the true averaging. It shows no difference in final performance while the MC strategy decrease the computational complexity by a factor 4.

Architecture	Dataset	Monte-Carlo Sample	Reynolds Average
DnCNN	BSD10	30.698 ± 1.645	30.684 ± 1.645
DRUNet	fastMRI	30.678 ± 0.740	30.646 ± 0.752
LipDnCNN	Set3C	32.705 ± 0.868	32.706 ± 0.868

Table 5. Performance of algorithms from Fig. 4 when relying on Monte-Carlo estimates and averaged equivariant architectures.

10. Equivariant algorithms

The equivariant counterpart of (PnP) is

Sample
$$g_k \sim \mathcal{G}$$

Set $\widetilde{D}_{\mathcal{G},k}(x) = T_{g_k}^{-1} D(T_{g_k} x)$ (eq. PnP)
 $x_{k+1} = \widetilde{D}_{\mathcal{G},k} \left(x_k - \gamma A^\top (Ax_k - y) \right).$

The equivariant counterpart of (RED) is

Sample
$$g_k \sim \mathcal{G}$$

Set $\widetilde{D}_{\mathcal{G},k}(x) = T_{g_k}^{-1} D(T_{g_k} x)$
 $x_{k+1} = x_k - \gamma A^{\top} (Ax_k - y)$
 $- \gamma \lambda (x_k - \widetilde{D}_{\mathcal{G},k}(x_k)).$ (eq. RED)

The equivariant counterpart of (ULA) is

.

Sample
$$g_k \sim \mathcal{G}$$

Set $\widetilde{D}_{\mathcal{G},k}(x) = T_{g_k}^{-1} D(T_{g_k} x)$
 $x_{k+1} = x_k - \gamma A^{\top} (Ax_k - y)$
 $-\gamma \lambda (x_k - \widetilde{D}_{\mathcal{G},k}(x_k)) + \sqrt{2\gamma} \epsilon_k.$
(eq. ULA)