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8. Details on the non-linear example

Derivation of Dg We have
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yielding the desired result. The second step uses the fact
that Bo = By + P and that B; and prox are G-equivariant
functions. The third step just uses that B, is a G-equivariant
function.

Numerical details for Figure 2 For both the leftmost and
rightmost examples, we consider the group G consisting of
permuations of the coordinates of the vectors. This is a
group with a single element g, the matrix representation of
its linear application being the unitary matrix
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In the leftmost example, we use A = diag(2,1), By =1
(B is thus G-equivariant) and A = 10. The perturbation

and its G-average are
0.022
—0.064 )’

—0.228 —-0.023 —0.064
P= < 0.066 0.1 ) Fo = ( 0.022
with associated norms || P||p = 0.26, || Pg||p = 0.10. The
(PnP) algorithm is ran with v = 5e — 2.

In the rightmost example, we use A = diag(2, 5e — 4),
By = I and A = 2. The perturbation and its G-average are
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with associated norms || P||r = 0.0469, || Pg||r = 0.0366.
The (PnP) algorithm is ran with v = 0.2.

9. MC sampling and Reynolds averaging

We compare in Table 5 the performance of the equivariant
architecture when training with the proposed Monte-Carlo
(MC) scheme vs the true averaging. It shows no differ-
ence in final performance while the MC strategy decrease
the computational complexity by a factor 4.

Architecture Dataset Monte-Carlo Sample
DnCNN BSD10 30.698 £ 1.645
DRUNet fastMRI ~ 30.678 £ 0.740
LipDnCNN = Set3C 32.705 £+ 0.868

Reynolds Average
30.684 £+ 1.645
30.646 £ 0.752
32.706 £ 0.868

Table 5. Performance of algorithms from Fig. 4 when relying on
Monte-Carlo estimates and averaged equivariant architectures.

10. Equivariant algorithms

The equivariant counterpart of (PnP) is
Sample g ~ G
Set Dg i(z) = T, D(Ty, )
Th+1 = f)g,k (CUk: - WAT(A% - y)) .

(eq. PnP)

The equivariant counterpart of (RED) is

Sample gx ~ G
Set Dg i(z) = T, ' D(Ty,x
g,k( ) _c_]lf ( 9k ) (eq. RED)
Tp1 =T — YA (Axk - y)
— Y@k — Dg i (wx)).
The equivariant counterpart of (ULA) is

Sample g, ~ G
Set ﬁg)k(l‘) = Tg_kl D(qux)

(eq. ULA)
Tpt1 = Tk — VAT(Axk - y)

— YA\ — ]Sg7k(.rk)) + v/ 27€k.
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