
VecFusion: Vector Font Generation with Diffusion
-Supplementary Material-

A: Implementation Details
Here we provide additional implementation details of our
network architecture. Our model is implemented in Py-
Torch.

Raster diffusion denoiser. Our raster diffusion denoiser
follows the UNet architecture in [4, 6]. The UNet model
uses a stack of residual layers and downsampling convolu-
tions, followed by a stack of residual layers with upsam-
pling convolutions, with skip connections connecting the
layers with the same spatial size. We provide an overview
of the hyperparameters in Table 1. To condition the model
on the character identifier, we use a look-up table to project
it to an 896-dimensional embedding and then add it together
with the time step embedding to modulate the feature maps
of each residual block.

Few-shot font style encoder. In the application of few-
shot font style transfer, we used a ConvNet to encode ref-
erence raster glyphs into a font style feature map. We used
the encoder part of the UNet architecture in [4, 6]. The
ConvNet encoder encodes the 64 × 64 input image into an
8× 8× 512 high-dimensional feature map via 3 downsam-
pling layers.

Vector diffusion denoiser. Our vector diffusion denoiser
is an encoder-only transformer following BERT [3]. We
set the number of transformer layers and the number of at-
tention heads to 8 and 12 respectively. To condition the
vector diffusion denoiser on the raster guidance x0, we first
encode the 64 × 64 × 4 raster image to a 16 × 16 × 768
high-dimensional feature map with a ConvNet encoder. The
ConvNet encoder has two downsampling layers with self-
attention layers at resolution 32×32 and 16×16. The Con-
vNet encoder is trained with the transformer jointly. After
obtaining the 16× 16× 768 high-dimensional feature map,
we flatten it to a shape of 256× 768, then we add it to each
transformer layer via cross-attention following [6].

Computation cost. Raster-DM and Vector-DM are
trained separately. Each of them is trained on 8 A100 GPUs

Input shape 64 × 64 × 4
Diffusion steps 1000
Noise Schedule cosine
Channels 224
Depth 2
Channel Multiplier 1,2,3,4
Attention resolutions 32,16,8
Head Channels 32
Batch Size 448
Learning Rate 3.24e-5

Table 1. Hyperparameters for raster diffusion denoiser

for 5 days. Finally, at inference time, generating a glyph
takes around 10 seconds on a A100.

B: Additional Results
Comparison with a vectorizer approach. As an alterna-
tive comparison, we tried the following approach: instead
of using the vector diffusion model, we use PolyVec [1]
or LIVE [5] on the rasterized font image produced by our
raster diffusion stage. We also tried upsampling the 64×64
output raster image to 256×256 using ESRGAN [7] before
passing it to the vectorizer. We show qualitative comparison
in Figure 1. In both cases, PolyVec and LIVE often failed
to produce coherent curve topology, structure, and plausible
control point distributions.

Additional comparisons with DeepVecFont-v2 [8].
Please see Figure 2 for more comparisons with
DeepVecFont-v2 [8] on the task of few-shot font style
transfer.

Additional comparisons with ChiroDiff [2]. Please see
Figure 3 for more comparisons with ChiroDiff [2] on the
task of missing unicode generation.

References
[1] Mikhail Bessmeltsev and Justin Solomon. Vectorization of

line drawings via polyvector fields. ACM Trans. Graph., 38

1

Raster-DM Output Ours PolyVec LIVE ESRGAN + PolyVec ESRGAN + LIVE

Figure 1. We compare our results (Ours) with PolyVec [1] and LIVE [5] applied to the raster image produced by our raster diffusion stage
(left-most column). We also compare with PolyVec and LIVE applied to a higher-resolution version of the raster image upsampled via
ESRGAN [7]. For each glyph, we show the predicted control points as well. Using our vector diffusion stage instead of an off-the-shelf
vectorizer produces higher-quality glyphs and much more plausible control point distributions. Compared to our vector diffusion model,
ESRGAN + PolyVec requires about ten times more control points for effective glyph reconstruction but sacrifices user editability and SVG
compactness. We recommend the viewer to zoom in for better clarity.

(1):9:1–9:12, 2019. 1, 2
[2] Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xiang,

and Yi-Zhe Song. Chirodiff: Modelling chirographic data
with diffusion models. In International Conference on Learn-
ing Representations, 2023. 1, 3

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[4] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021. 1

[5] Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev,
Nikita Orlov, Yun Fu, and Humphrey Shi. Towards layer-wise
image vectorization. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2022. 1, 2

[6] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 1

[7] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan.
Real-esrgan: Training real-world blind super-resolution with
pure synthetic data. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1905–1914,
2021. 1, 2

[8] Yuqing Wang, Yizhi Wang, Longhui Yu, Yuesheng Zhu, and
Zhouhui Lian. Deepvecfont-v2: Exploiting transformers to
synthesize vector fonts with higher quality. arXiv preprint
arXiv:2303.14585, 2023. 1, 3

Input reference GT NNs Ours DVF-v2

Figure 2. Few-shot style transfer results. From left to right, we
show the reference glyphs (2 out of 4) belonging to a novel font
style, the artist-made (“ground-truth/ GT”) glyphs, the nearest-
neighbours (“NNs”) to GT in the training data, our generated ones,
and DeepVecFont-v2 (DVF-v2) [8]

GT Ours Ours ChiroDiff
full No cp field vector only

Ours Ours
cont. coord.

only

Figure 3. Glyph generation results for test cases from the Google
font dataset. We compare our method to ChiroDiff [2] and de-
graded variants of our method. Our full method is able to generate
glyphs that are much closer to artist-made (“ground-truth”/“GT”)
ones compared to alternatives.

